
Personalising Context-Aware Applications⋆

Karen Henricksen1 and Jadwiga Indulska2

1 CRC for Enterprise Distributed Systems Technology (DSTC)
karen@itee.uq.edu.au

2 School of Information Technology and Electrical Engineering,
The University of Queensland

jaga@itee.uq.edu.au

Abstract. The immaturity of the field of context-aware computing means
that little is known about how to incorporate appropriate personalisation
mechanisms into context-aware applications. One of the main challenges
is how to elicit and represent complex, context-dependent requirements,
and then use the resulting representations within context-aware applica-
tions to support decision-making processes. In this paper, we characterise
several approaches to personalisation of context-aware applications and
introduce our research on personalisation using a novel preference model.

1 Introduction

Context-awareness has emerged as a popular design approach for building adap-
tive applications for mobile and pervasive computing environments. Context-
aware applications rely on information about the context of use - such as the
user’s current location and activity - to provide seamless operation in the face
of mobility and intelligent support for users’ evolving requirements.

As users of context-aware applications can differ greatly in terms of their
requirements and expectations about how their applications should behave, per-
sonalisation mechanisms are required. Unfortunately, personalisation of context-
aware applications is substantially more challenging than personalisation of tra-
ditional desktop applications. Because the actions of context-aware applications
are partially determined by the context, user preferences must likewise be pred-
icated on context. The set of distinct contexts recognised by a context-aware
application may be large, implying that the set of user preferences might also be
large and complex. A further problem related to personalisation is the need to
provide users with a clear mental model and appropriate feedback mechanisms
that allow them to understand the links between application behaviours and
their specified preferences. These are essential in order to prevent user frustra-
tion at apparently erratic behaviour, and to facilitate trouble-shooting.

⋆ The work reported in this paper has been funded in part by the Co-operative Re-
search Centre for Enterprise Distributed Systems Technology (DSTC) through the
Australian Federal Government’s CRC Programme (Department of Education, Sci-
ence, and Training).



Owing to the immaturity of the field of context-aware computing, very lit-
tle research has addressed personalisation. Rather, the main focus has been on
techniques for acquiring, interpreting and managing context information from
sensors. In this paper, we survey the limited work that has been done in the
area and then report on our own research, which has investigated personalisa-
tion based on a novel preference model.

The structure of the paper is as follows. Section 2 provides an analysis of
three approaches that have been pursued for personalisation of context-aware
applications, while Sections 3 and 4 introduce the preference model used in our
work. Section 5 briefly touches on implementation issues, describing a software
infrastructure and programming toolkit we developed to facilitate the use of our
preference model by context-aware applications. Finally, Section 6 highlights
some user interface design issues and Section 7 discusses topics for future work.

2 Personalisation Approaches

The existing approaches to personalising context-aware applications can be clas-
sified as follows:

– End-user programming approach. This approach offers the most radical form
of personalisation: rather than applications being developed by software en-
gineers with hooks for customisation by users, end-user programming tech-
niques place the task of constructing applications into the hands of users.
Several styles of end-user programming exist, including programming by
demonstration [1], in which users train a system to carry out desired actions
by manually demonstrating the actions, and programming by specification
[2], in which users provide high-level descriptions of desired actions.

– User modelling/machine learning approach. This approach removes respon-
sibility for personalisation from the user, instead using machine learning
techniques to automatically derive user requirements from historical data.
These requirements can be represented in the form of user models suitable
for use by applications as a basis for adaptive and pro-active behaviours [3].

– Preference-based approach. This approach is the closest to traditional person-
alisation approaches for desktop applications. It typically relies on user in-
terfaces or configuration files through which users can manipulate settings or
rules that control the way applications react to context. Other than our own
work, we are not aware of any research that addresses the general problem
of personalising context-aware applications with context-dependent prefer-
ences; however, several applications that provide custom-designed preference
mechanisms have been developed (e.g., [4]).

Each approach has shortcomings which limit its applicability to certain appli-
cation domains. The main problem of end-user programming techniques is that
they are generally suitable only when the application behaviours that users need
to specify are reasonably simple. For complex tasks, users experience difficulties
in demonstrating or specifying their requirements. As a result, the most common



scenarios presented in the literature on end-user programming concentrate on
simple tasks, such as loading presentation files in advance of a meeting [1]. A
further problem is that most of the end-user programming solutions are primar-
ily concerned with supporting the initial programming task, and it is unclear
how well they can support evolution as user requirements or the environment
change. Finally, a large initial investment is expected of users to either train the
system or specify the required behaviours.

The second approach, based on user modelling and machine learning, is more
appropriate than end-user programming for complex applications and does not
require a period of explicit training or set-up by the user. However, mistakes are
nearly always made during the learning process, causing frustration to the user.
The user can provide feedback to help prevent similar mistakes in the future;
however, many rounds of feedback may be required before the desired behaviour
emerges. Users may prefer to avoid the frustration of repeatedly providing feed-
back by explicitly specifying some or all of their requirements; however, manual
customisation is unfortunately not supported in this approach.

The preference-based approach does not suffer from this problem, as it al-
lows users to explicitly specify requirements at any time. It can also be used
in conjunction with automated preference learning mechanisms, so as to reduce
the burden on users to specify preference information that is complete and up
to date. Finally, unlike end-user programming, the preference-based approach is
appropriate even for complex applications. This means that it is arguably the
most promising and widely applicable of the three approaches.

3 A Preference Model for Context-Aware Applications

The remainder of the paper focuses on our preference-based personalisation ap-
proach, which is based on a novel preference model. This section introduces the
model, while preference examples are deferred until following section.

When starting our work on personalisation, we surveyed preference modelling
approaches from diverse fields such as decision theory and document retrieval,
with the aim of identifying a preference model that could be used as a basis
for personalisation of context-aware applications. This survey can be found in
[5]. However, none of the approaches that we examined was able to represent
context-dependent preferences. Accordingly, we developed our own preference
model designed to address this limitation. This model supports user-customisable
decision-making by context-aware applications, as shown in Fig. 1.

In this decision-making process, user preferences are evaluated against a set
of context information, candidate choices (which may be associated with one or
more corresponding actions) and application state variables, to yield an assign-
ment of ratings to the candidate choices. The user preferences may reflect the
requirements of one or multiple users. Arbitrary kinds of choices can be sup-
ported: for example, the choices may be documents or search terms in the case
of an information retrieval application, or email folders in the case of an email
filtering tool.



Selected

choices
(& actions)

Choice

ratings

Preference
evaluation

Selection
(branching)

User preferences

Application state

Candidate choices
(& actions)

Context information

Fig. 1. Context- and preference-based decision process for context-aware applications.

After using the preferences to rate the candidate choices, the context-aware
application selects zero or more of the choices, and carries out a set of corre-
sponding actions (for example, displaying a set of chosen documents to the user
or filtering an email to a selected folder). We refer to this step as branching.

Each user preference takes the form of a scope and a scoring expression. The
scope specifies the context and choices to which the preference applies using a
special form of logical predicate, which we term a situation. Our notation for
defining situations is described in an earlier paper [6], in which we outlined our
approach to context modelling, and therefore will not be described in detail
here. The scoring expression produces a rating that indicates the suitability of
the choices that match the scope within the given context. This rating is one of
the following:

– a numerical value in the range [0,1], where increasing scores represent in-
creasing desirability;

– prohibit, indicating that a choice must not be selected in a given context;
– oblige, indicating that a choice must be selected in a given context;
– indifferent, indicating an absence of preference; or
– undefined, signalling an error condition (e.g., an attempt to combine prohibit

and oblige scores).

Preferences may be either simple preferences, which express atomic user re-
quirements, or composite preferences, which specify how other preferences are
combined to produce appropriate aggregate ratings. Related preferences can also
be dynamically grouped into preference sets. In the following section, we present
some example preferences and preference sets.

4 Preference Examples

Although user preferences may be generic enough to be applied to many context-
aware applications, most preferences are specific to a particular application (and
type of choice within that application). Here, for illustrative purposes, we focus
on the specification of preferences for a context-aware email client. This appli-
cation uses context information to enhance a set of standard email management



l7 unread = when outOfOffice(me) and
contains(to, “level7@dstc.edu.au”) and
equals(status, “new”) and
equals(folder, “inbox-secondary”)

rate high

l7 read = when equals(status, “read”) and
contains(to, “level7@dstc.edu.au”) and
equals(folder, “level7”)

rate high

personal = when (familyMembers(me, sender) or friends(me, sender)) and
equals(folder, “personal”)

rate medium high

important = when equals(priority, “highest”) and
equals(status, “new”) and
equals(folder, “inbox”)

rate oblige

filtering set = {l7-unread, l7-read, personal, important}

filtering = when true
rate average(filtering set)

Table 1. Example preferences for email forwarding.

features, such as automatic forwarding and filtering of messages, alerting for im-
portant messages, and auto-replying to messages. The use of context-awareness
allows the email client to behave more pro-actively than would otherwise be
possible. For instance, the client can automatically produce auto-reply messages
when the user is on vacation (without any prior set-up) and perform message
filtering on arbitrary types of context, not only on message headers and content.

In Table 1, we show some sample user preferences related to filtering. The goal
of filtering is to assist with organising email into folders. These preferences as-
sume that the user’s email folders include the following: inbox, inbox-secondary,
personal and level7. Four simple preferences (l7 unread, l7 read, personal and
important), one composite preference (filtering), and one preference set (filter-
ing set) are shown.

The scope of each preference follows the “when” keyword, while the scoring
expression is preceded by the “rate” keyword. The first preference states that
filtering to the secondary inbox is highly preferred when:

– the message is addressed to the level7 mailing list (“level7@dstc.edu.au”);
– the user is currently out of the office (which possibly implies that the message

is irrelevant, as much of the list traffic is solely of interest to the current
occupants of floor level 7); and

– the message is new (i.e., unread).

The second preference states that already read messages addressed to the
same mailing list should be filed in the level7 folder, with high preference. The



personal preference states that messages from family members or friends should
be filed to the personal folder, with medium-high preference, while the important
preference states that unread messages that have the highest priority level must
always remain in the user’s inbox. The preference ratings medium high and high
are mapped to numerical values as defined by the application developer, in order
to allow aggregation of scores. Note that, although the preferences are somewhat
similar in appearance to the user-defined message filters that are already sup-
ported by email clients such as Mozilla Thunderbird and Microsoft Outlook,
two of the preferences (l7 unread and personal) refer to external context defini-
tions (i.e., the outOfOffice, familyMembers and friends situations) that cannot
be included in standard email filters.

To combine the requirements expressed by these four simple preferences to
support decision making about how to filter messages, the preferences are first
grouped into a preference set (filtering set). The filtering composite preference
then defines the overall rating for a given folder as the average of the ratings
produced by the preferences in this set. Here, averaging is performed according
to the following simple algorithm:

1. if any preference produces the undefined score, the result of averaging is the
undefined score; else

2. if one or more preferences produces the oblige score and one or more pref-
erence produces the prohibit score, then the result is the undefined score;
else

3. if one or more preferences produces the oblige score, then the result is the
oblige score; else

4. if one or more preferences produces the prohibit score, then the result is the
prohibit score; else

5. if one or more preferences produces a numerical score, then the result is the
average of all numerical scores; else

6. if all preferences produce indifferent scores (which occurs by default when
the preference scopes do not hold), then the result is the indifferent score.

To illustrate, we consider the scenario in which the email client filters an
already read message that was sent by a friend of the user to the level7 mailing
list. The ratings produced by the preferences defined in Table 1 are shown in
Table 2. Only the l7 read and personal preferences are relevant to this example.
The remaining preferences produce indifferent ratings for all four email folders.
As the l7 read preference produces a higher preference rating, this preference
takes precedence. Therefore, the message in this example would be filtered to
the level7 folder, rather than the personal folder.

5 Infrastructural Support for Personalisation

To assist with implementing context-aware applications that support personali-
sation using our preference model, we have developed a layered software infras-
tructure that supports:



Preference inbox inbox-secondary personal level7

l7 unread indifferent indifferent indifferent indifferent

l7 read indifferent indifferent indifferent high

personal indifferent indifferent medium-high indifferent

important indifferent indifferent indifferent indifferent

filtering indifferent indifferent medium-high high

Table 2. Preference ratings for an already read message sent by a friend to the level7
mailing list.

– integration, management and querying of context information from various
sources, including sensors, context-aware applications and human users (con-
text management layer);

– management and evaluation of user preference information (preference man-
agement layer); and

– decision making and branching at the application layer, using the services of
the context and preference management layers (programming toolkit).

The context and preference management layers are implemented in Java, using
relational databases for information storage and management. However, they ac-
cept requests via several different communication protocols (XML/HTTP, Java
RMI and Elvin [7]), and therefore can be used in conjunction with a variety
of platforms and programming languages. The programming toolkit, which pro-
vides various helper classes for formulating decision problems and selecting ap-
propriate actions based on the ratings produced by the preference management
layer, can currently only be used by Java applications, but could be ported to
other languages in the future. Further information about the software infrastruc-
ture can be found in some of our earlier papers [6, 8].

6 User Interface Design

The preference notation that we described in Sections 3 and 4 is used internally
by our programming toolkit and preference management layer, but would rarely
be exposed directly to users. In this section, we discuss some issues related to the
design of user interfaces to support personalisation of context-aware applications.
Appropriate user interface designs must necessarily be considered on a case-by-
case basis; because of this, our discussion focuses on the design of a user interface
for the email application we discussed in Section 4, as a case study. However, we
also offer a set of general design guidelines in Section 6.2.

6.1 Personalisation Interfaces for Context-Aware Email

Email applications provide a useful starting point for thinking about user inter-
face design issues, as most already support personalisation. Therefore, instead
of thinking about how personalisation can be incorporated from scratch, it is



Fig. 2. An extension of the current Thunderbird filter rule interface to support context-
dependent filters.

only necessary to think about how to extend the existing personalisation to
support context-dependent user preferences. We have been working on a set of
context-aware extensions for the Thunderbird email client3.

Thunderbird supports many types of personalisation, but here we focus on
filtering. Users can define new message filters, and enable/disable already created
filters. Filters are specified as matching conditions, defined in terms of message
headers, and corresponding actions (e.g., “move a message to a specified folder”).
To support context-based filtering, only minor changes are needed to the existing
user interface. In Fig. 2, we show a trivial extension of the current interface which
allows the matching conditions to be augmented with relevant situations. Each
filter can be mapped to a preference that conforms to the preference model
described in Sections 3 and 4. Observe, for example, that the filter defined in
Fig. 2 matches the scope of the l7 unread preference in Table 1. The rating
assigned to this preference/filter is set on another screen (not shown), which
lists all defined filters and provides controls for enabling/disabling filters.

The fact that our preference model provides such a close fit with the existing
personalisation model used by Thunderbird - despite the fact that we did not
have email in mind as a target application when designing the preference model -

3 http://www.mozilla.org/products/thunderbird/



helps to validate the design of the model. As we show in this example, personal-
isation interfaces should be consistent with the general appearance and function
of a context-aware application, rather than being closely tied to the preference
model. In particular, a personalisation interface should always be more than a
simple preference editor that expects the user to directly formulate preferences
of the kind shown in Table 1.

6.2 General Design Guidelines

To date, we have built a number of personalisable context-aware applications
using our preference model. These have included several communications ap-
plications [6, 9], a vertical handover application for managing the streaming of
multimedia to mobile users [8], and virtual community applications to support
independent living of the elderly [10]. As a result of our experiences with these
applications, we offer the following general design guidelines:

– Constrain the types of personalisation that can be performed by users. That
is, even when using a generic preference model such as the one we have
presented, the full power of the model should not be exposed to users. There
are two reasons for this: (i) users are likely to be overwhelmed and confused,
and (ii) complex preference sets should be thoroughly tested before they are
deployed to ensure that no unexpected behaviours emerge.

– Integrate personalisation mechanisms into the everyday use of the applica-
tion. This helps to ensure that personalisation is a natural and visible part of
the application, and increases the chance that users will use and understand
the personalisation mechanisms. This design principle is somewhat similar
to the one advocated by Lederer et al. [11] in relation to designing systems
to support privacy.

– Provide logging and feedback mechanisms. These should let users (i) see how
their preferences are linked to actions and (ii) override actions if necessary.
Logging and feedback can help to prevent user frustration and assist users
with correcting preference and/or context information when required.

– Provide useful default behaviours. That is, ensure that most people will be
able to use the application reasonably well from first use, even without any
personalisation. Some people will resist using personalisation mechanisms at
all, no matter how visible and straightforward they are.

7 Future Work

This paper outlined our efforts to develop a preference model for personalisa-
tion of context-aware applications. As discussed in Section 6.2, we have used the
model in conjunction with a variety of context-aware applications. Although our
experiences with using the model have been positive, we have already identified
some important refinements and extensions for future work. In particular, we
have started designing some modifications to the preference model that should



improve both the usability of the model for application developers and the effi-
ciency of preference evaluation. We have also begun working on techniques for
automated preference learning based on user feedback. In the near future, we
hope to extend our programming toolkit and preference management system to
support these mechanisms. In the longer term, we plan to investigate extensions
of the preference model to a broader set of decision problems relevant to context-
aware applications. At present, our model is best suited to choices over a fixed
(and reasonably small) set of alternatives; in the future, we plan to study deci-
sion problems that are both larger and more open-ended. Finally, appropriate
user evaluation is crucial, not only for our preference model, but also for the
other personalisation approaches discussed in Section 2.

References

1. Dey, A.K., Hamid, R., Beckmann, C., Li, I., Hsu, D.: a CAPpella: Programming
by demonstration of context-aware applications. In: ACM Conference on Human
Factors in Computing Systems (CHI), Vienna (2004)

2. Truong, K.N., Huang, E.M., Abowd, G.D.: CAMP: A magnetic poetry interface for
end-user programming of capture applications for the home. In: 6th International
Conference on Ubiquitous Computing (UbiComp). Volume 3205 of Lecture Notes
in Computer Science., Springer (2004) 143–160

3. Byun, H.E., Cheverst, K.: Harnessing context to support proactive behaviours. In:
ECAI2002 Workshop on AI in Mobile Systems, Lyon (2002)

4. Lei, H., Ranganathan, A.: Context-aware unified communication. In: 5th Interna-
tional Conference on Mobile Data Management (MDM), Berkeley (2004)

5. Henricksen, K.: A Framework for Context-Aware Pervasive Computing Applica-
tions. PhD thesis, School of Information Technology and Electrical Engineering,
The University of Queensland (2003)

6. Henricksen, K., Indulska, J.: A software engineering framework for context-aware
pervasive computing. In: 2nd IEEE International Conference on Pervasive Com-
puting and Communications (PerCom), IEEE Computer Society (2004) 77–86

7. Segall, B., Arnold, D., Boot, J., Henderson, M., Phelps, T.: Content based routing
with Elvin4. In: AUUG2K Conference, Canberra (2000)

8. Henricksen, K., Indulska, J., McFadden, T., Balasubramaniam, S.: Middleware
for distributed context-aware systems. International Symposium on Distributed
Objects and Applications (DOA) (to appear) (2005)

9. McFadden, T., Henricksen, K., Indulska, J., Mascaro, P.: Applying a disciplined
approach to the development of a context-aware communication application. In:
3rd IEEE International Conference on Pervasive Computing and Communications
(PerCom), IEEE Computer Society (2005) 300–306

10. Indulska, J., Henricksen, K., McFadden, T., Mascaro, P.: Towards a common con-
text model for virtual community applications. In: 2nd International Conference on
Smart Homes and Health Telematics (ICOST). Volume 14 of Assistive Technology
Research Series., IOS Press (2004) 154–161

11. Lederer, S., Hong, J.I., Dey, A.K., Landay, J.A.: Personal privacy through under-
standing and action: five pitfalls for designers. Personal and Ubiquitous Computing
8 (2004) 440–454


