
XCML: A runtime representation for the Context Modelling Language

Ricky Robinson and Karen Henricksen
National ICT Australia

Queensland Research Laboratory
{ricky.robinson,karen.henricksen}@nicta.com.au

Jadwiga Indulska
School of Information Technology and Electrical Engineering

University of Queensland
and

National ICT Australia
jaga@itee.uq.edu.au

Abstract

The Context Modelling Language (CML), derived from
Object Role Modeling (ORM), is a powerful approach for
capturing the pertinent object types and relationships be-
tween those types in context-aware applications. Its support
for data quality metrics, context histories and fact type clas-
sifications make it an ideal design tool for context-aware
systems. However, CML currently lacks a suitable rep-
resentation for exchanging context models and instances
in distributed systems. A runtime representation can be
used by context-aware applications and supporting infras-
tructure to exchange context information and models be-
tween distributed components, and it can be used as the
storage representation when relational database facilities
are not present. This paper shows the benefits of using
CML for modelling context as compared to commonly used
RDF/OWL-based context models, shows that translations
of CML to RDF or OWL are lossy, discusses existing tech-
niques for serialising ORM models, and presents an alter-
native XML-based representation for CML called XCML.

1. Introduction

Software engineering processes are, in general, consti-
tuted by a number of distinct phases. These include re-
quirements gathering and analysis, design and implementa-
tion. These are ordinarily followed by some kind of verifi-
cation or testing step, and maintainence. Depending on the
particular process, these phases may be repeated. Various

tools and methodologies are used during and between these
phases to formalise and, in many cases, simplify the task of
converting a set of initial requirements into a concrete, op-
erational system. Conceptual models are often used to cap-
ture the design of a system. Good modelling notations sim-
plify the task of converting domain knowledge into a system
“blueprint”. Tools also exist to fully or partially automate
the process of converting conceptual models into concrete
implementations. We argue that the engineering of context-
aware systems should be no different to traditional software
engineering in these respects. The Context Modelling Lan-
guage (CML) has proven to be an excellent graphical nota-
tion for capturing context information requirements at de-
sign time [8, 9]. The process of mapping a CML model
to a relational database has also been described previously.
However, in distributed systems, there is also a need to be
able to share context information and context models be-
tween loosely coupled entities.

This paper shows why CML is a better choice for mod-
elling context information, specifically at the design stage,
than RDF and OWL based approaches. It also introduces an
XML serialisation of CML, called XCML, for sharing con-
text information among distributed entities, and it justifies
the introduction of this new serialisation by showing that
CML and context facts that conform to CML cannot be ad-
equately translated to XML Schema-based or OWL-based
representations.

The remainder of this paper is structured as follows. Sec-
tion 2 provides a critique of two modelling techniques that
are commonly used in context-aware systems: RDF and
OWL. It shows that the modelling constructs of CML are
considerably more natural than those of RDF and OWL,
validating our decision to model context information with

CML. Section 3 provides a brief overview of two previ-
ously proposed XML representations of ORM [6, 7] (the
modelling notation from which CML is derived), highlight-
ing the differences between these representations and the
approach that we propose in this paper. Section 4 presents
the design of our solution and a small modelling example.
Section 5 gives an overview of related work in this area. Fi-
nally, Section 6 summarises the contributions of this paper
and discusses future work.

2. Critique of RDF and OWL

RDF and OWL are gaining popularity as means to model
context information [3, 4, 14]. We argue that RDF and, by
extension, OWL suffer important limitations that restrict
their effective use as context modelling formalisms.

First, RDF supports only binary relations. This has the
implication that any relation in the domain being modelled
with an arity not equal to two must be translated into a set
of binary relations. The immediate effect of this is that
RDF/OWL representations of context are a step further re-
moved from the universe of discourse. Higher arity rela-
tions are necessary to simplify the process of correctly cap-
turing the domain requirements, and ensuring that the cap-
tured model closely resembles the domain being modelled.
Further problems follow from the necessity of converting
n-ary relations to their binary equivalent. In translating an
n-ary relationship, the modeller must make a decision as
to how to decompose (or, in the case of unary relations, to
synthesize) the relation into a set of binary relationships.
For unary relations this is simple: the binary equivalent re-
lates a subject to a boolean value. But for relationships of
arity greater than two, there are several choices [12]. The
problem is that RDF and OWL are inconsistent in the way
they model n-ary relationships, because the translation to a
set of binary relationships depends upon the particular use
case. Furthermore, relationships of arity greater than two al-
ways have a different representation to binary relationships
because they all involve objectifying the relationship. Fi-
nally, if the original n-ary relationship, as expressed in a
conceptual modelling language capable of representing n-
ary relations directly, is to be reconstructed from the RDF
representation, then the RDF representation must include
additional information indicating that one or more objects
in the RDF model are, in fact, objectified relations. This
additional information adds further complexity to the RDF
model, but it allows the original and intended semantics to
be restored.

In OWL, there is a tendency to define classes as sub-
classes of anonymous classes that assert restrictions on cer-
tain properties. Figure 1 shows an example of this: Vehicle
is a subclass of the (anonymous) class of things that have
one or more wheels. The use of an anonymous class in this

example is an artefact of the manner in which such a defini-
tion is usually serialised:

<owl:Class rdf:about=‘#Vehicle’>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource=‘#numberOfWheels’ />
<owl:minCardinality

rdf:datatype=‘&xsd;nonNegativeInteger’>
1

</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

The anonymous restriction class is specific to the Vehicle
class and cannot be referenced by other classes. This means
that other classes that have one or more wheels must define
their own anonymous restriction class. This heavy use of
the subclass property and of restriction classes means that
OWL models quickly become unwieldly. OWL models are
rarely shown using the graphical RDF representation as in
Figure 1. Rather, the XML serialisation is more commonly
used, indicating that there is little difference in the level of
clarity between the graphical and serialised representations.
We contend that this may retard the uptake of OWL, be-
cause designers prefer to use easily understood graphical
models that more directly and closely represent the domain
being modelled. This problem extends to the modelling of
context information.

ORM and ORM-based representations, such as CML, do
not suffer from these difficulties, which makes them a bet-
ter choice for modelling context information. Furthermore,
some constraints that can be expressed in CML are difficult
to translate to OWL, unless a rule language such as the Se-
mantic Web Rule Language (SWRL) [10] is used on top of
OWL, which adds a further layer of complexity. For exam-
ple, the external uniqueness contraints of ORM and CML
cannot be expressed succinctly in OWL. That is to say, it
is difficult to express the case where individuals of a class
C can be uniquely identified by the combination of two (or
more) of its properties. This may be achievable in OWL
by objectifying the combination of properties into a class P,
and then defining a new property from C to P and applying
the appropriate cardinality constraint on this new property.
However, this manipulation far removes the model from the
domain problem, and therefore does not lend itself to simple
capture of the domain requirements.

3. Mappings of ORM to XML

The XML representation of CML discussed in the next
section is the first attempt to serialise CML models and
CML conformant context facts. However, there are already
several solutions for representing ORM models in XML.
In this section, we show why these XML serialisations for
ORM are not applicable to CML.

owl:Class

v:Vehicle

v:Truck

v:Car
v:Motorcycle

rdf:type

rdfs:
subClassOfrdfs:

subClassOf

rdfs:subClassOf

rdf:type

rdf:type

rdf:type

owl:Restriction

<anonymous>

owl:disjointWith

rdfs:subClassOf

v:numberOfWheels
owl:onProperty

1

owl:minCardinality
(rdf:datatype=
nonNegativeInteger)

rdf:type

owl:DatatypeProperty

rdf:type

Figure 1. Graphical representation of a simple OWL ontology for vehicles.

The earliest solution (that we are aware of) for transform-
ing ORM models to XML was proposed by Bird et al. [2].
They showed that it is possible to automatically map ORM
models to XML Schema, effectively creating a unique XML
language from each model. In this approach, instances
(facts) can be exchanged in heterogeneous systems using
the unique XML language, and ORM models can be ex-
changed as XML Schema documents. However, mappings
from ORM models to XML Schemas are lossy (e.g., some
constraints cannot be captured) so it is not possible to fully
reconstruct an ORM model from an XML Schema.

Bird et al.’s mapping algorithm focuses on producing a
human-readable, hierarchical XML document in which re-
dundancy of information is minimised. As ORM models
are not inherently hierarchical, Bird et al. evaluate the rel-
ative importance of object types participating in fact types
and then structure the hierarchy accordingly.

Several characteristics of this mapping approach make
it unsuitable for our purposes. As mentioned above, it
provides an imperfect solution for exchanging ORM mod-
els. Additionally, the nested structure of the instance doc-
uments hinders the exchange and reassembly of informa-
tion in piecewise fashion, as is often necessary in a context-
aware system. Specifically, context-aware systems require
the ability to exchange any number of facts at a time, and
later reassemble these into larger instance documents with-
out the difficulty of reconstructing hierarchies. A further
problem, again resulting from the hierarchical structure, is
the difficulty of merging models (and any legacy instance
documents).

In the XML representation that we propose in the follow-
ing section, which adopts a flat document structure, these

issues become relatively straightforward. In addition, mod-
els and instances are all described using a single construct,
which makes it possible to (partially) validate and interpret
them without any prior knowledge. This is not possible with
Bird et al.’s approach, as they create an XML language for
each ORM model.

Another serialisation of ORM was proposed by Demey
et al. [5]. This solution, called ORM-ML, is an XML lan-
guage for capturing ORM models in a lossless way, so that
models can be completely reconstructed from the XML de-
scription (barring stylistic aspects, which can be captured
by separate stylesheets). ORM-ML provides an excellent
solution for exporting models from one ORM CASE tool
to another, for example. However, as it does not address
instances, it is not suitable for our purposes. Although we
could potentially adopt ORM-ML for exchanging models,
and create a separate solution for exchanging instances, we
have instead chosen to create a single, uniform representa-
tion for both, as this approach is conceptually cleaner and
requires only a single parser/validator. In this respect, our
XML representation of CML is similar to RDF, which also
utilises a single representation for schemas and instances.

4. An XML Mapping of CML-based Context
Models

4.1. Design Rationale

Our XML representation of CML, XCML, was designed
with the following goals in mind. First, it should be easy
to read. Although designers and developers should primar-

ily use the graphical CML notation, it is inevitable that they
will occasionally need to deal with the textual representa-
tion directly. Next, the serialisation must consist of a small
set of syntactical constructs, thereby reducing the learning
curve for developers and minimising the difficulty of writ-
ing a parser/validator for the language. For similar reasons,
the schema language should be the same as the instance
language. The serialisation should coincide as closely as
possible with the graphical model. That is, the mapping
ought to be direct, with no need to group fact types as is re-
quired by the ORM to XML Schema mapping (see Section
3). This property simplifies reconstruction of the graphical
model from the serialised version. The representation must
enable new fact types to be added after the original model
has been developed. This must be achievable without re-
quiring the graphical model to be retranslated. It must aid
the representation and communication of individual facts.
Finally, it should be capable of representing constraints and
properties, such as entity type and fact type equivalence,
that are not currently part of the ORM or CML specifica-
tions, but which become important in distributed, context-
aware applications in which many different context models
may coexist.

These goals led to the development of a serialisation that
is somewhat different from XML Schema and RDF.

In XCML, everything is represented as a fact. CML
models are described using facts which are instances of
one of a set of pre-defined fact types. These pre-defined
fact types are the result of serialising the CML meta-model
in XCML. Thus, XCML is self-defined, similarly to RDF.
XCML therefore has the property that CML models and
populated instances are represented using the same con-
structs. The only difference between model documents and
instance documents is that models are enclosed within the
model tag and fact instances are enclosed within the fact-
Base tag. The result of parsing an XCML model docu-
ment is an ORM/CML model rather than a document object
model (DOM) as in the case of standard XML approaches.
Parsing an XCML fact base yields a set of facts that can be
validated against the relevant model. XCML facts have the
following general structure:

<fact-type-name>
<role-name1>role value 1</role-name1>
<role-name2>role value 2</role-name2>
...

</fact-type-name>

Since XCML represents everything as facts, and because
facts cannot be nested, the mapping procedure is much sim-
pler than that required by the ORM to XML Schema ap-
proach, described in the previous section. The result is
a rendering that corresponds closely to the original OR-
M/CML diagram. It also means that additional fact types
can be inserted into the serialised model easily, without dis-
turbing existing fact types. In other words, the model can

be extended without the need to re-map the graphical model
to its serialised form.

Another advantage of XCML is that it enables individual
facts to be represented and transmitted easily. In RDF, prop-
erties are encapsulated within classes and objects; therefore
facts are a combination of the encapsulating class, the name
of the property and the property value. In the XML Schema
mapping, each model generates a hierarchical structure so
that individual facts may be encoded within several levels
of nesting. In XCML, facts are represented more naturally,
whereby the fact construct encapsulates the associated ob-
ject references or values, which are in turn declared via
other facts. XCML enables facts to be parsed and under-
stood at a basic level independently of the schema (model).
This is by virtue of the fact that there is a single construct
in XCML: the fact. In the ORM to XML Schema mapping,
each ORM model generates its own language with a unique
structure, which means that facts conforming to a particu-
lar model cannot be recognised as facts by a remote entity
unless that entity can refer to the schema document. This
is an issue of syntax. In XCML, the model document is re-
quired only to gain knowledge about what other roles might
be played by the objects in the current fact and to check
constraints.

These features make XCML relatively easy to read. In
fact, reading an XCML document is rather like reading a
natural language document in which each sentence conveys
an elementary fact. The overall meaning of an XCML docu-
ment is built up by reading individual facts in the same way
that the overall meaning of a natural language document is
established by reading individual sentences. This format
is similar to the manner in which ORM designers are en-
couraged to verbalise elementary facts from the universe of
discourse as the first step in creating an ORM model. It is
possible, therefore, that an ORM/CML model could be par-
tially derived from a set of elementary facts expressed using
XCML (which requires little effort over and above express-
ing the facts in natural language).

XCML introduces some elements that are not defined in
CML or ORM. The first element is the assertion of equiva-
lence between two entity types or fact types. This element
exists so that links can be formed between multiple models
that have been developed by different people or organisa-
tions. This expands the reach of any process that uses CML
facts as input (such as a reasoner, agent or context man-
agement system), because it has the potential to increase
the number of facts under consideration. XCML also in-
troduces an implicit type hierarchy, where unless a model
explicitly states otherwise, all types inherit from the pre-
defined Object type. The benefit of this is that the existence
of all objects, regardless of their type, is asserted using the
same fact type, and this fact type declares an object to have a
name (id) and a type. The newly declared object can then be

occurs at

produced by

involves involves involves

Accuracy
(%)

at...located at located at

Granularity
(metres)

Legend

Fact type

Object type

Sensed fact type

Profiled fact type

Value type

description

Uniqueness/key constraint
(on one or more fact type
role boxes)

Subtype relationship
Quality metric

(representation) Quality indicator

Person
Recognition

Number Plate
Recognition

Scene
Recognition

Person
(id)

Number Plate
(id)

Scene
(id)

Sensor
(id)

Mobile
Sensor

Fixed
Sensor

Recognition
Event

(id)

DateTime

DateTime
Position

(coordinates)

Type name

Type name
(representation)

Subtype

Supertype

Figure 2. A CML model for a surveillance application.

referenced from any XCML document via its name. XCML
names conform to the XML Namespace syntax for quali-
fied names, though unlike existing XML-based languages,
names can appear in character data sections in addition to
being used as element names. Thus, within XCML docu-
ments, objects are referred to via a URI. To introduce a new
type (or fact type), an object is declared whose type is Type
(or FactType). The section below shows an example of this.

The ability to represent hierarchies of types or concepts
and to assert relationships between the types, coupled with
a simple textual representation geared towards exchanging
facts in distributed environments, means XCML is an ex-
cellent candidate for representing ontological information.
ORM/CML and XCML can therefore be viewed as alterna-
tives to RDF/OWL and the RDF/XML serialisation.

4.2. XCML Example

Figure 2 shows a CML diagram that contains entity types
and fact types relevant to a surveillance application. Each
fact type is marked as being either profiled or sensed, ac-
cording to the expected sources of facts for each fact type.
In addition, three of the fact types have attached quality
metrics which indicate the accuracy and granularity of fact
instances. Figure 3 shows a partial serialisation of the CML

model depicted in Figure 2. The full serialisation can be
found on the web1.

The Declaration fact type can be read as Object has
Type. All objects are defined through this fact type. Objects
are then referred to via their name (id role). The Declara-
tion fact type appears in XCML model documents, where
it is used to define the types, fact types, constraints, etc.,
that constitute the model, and in fact bases, where it is used
to assert the existence of objects whose type has been pre-
viously defined in a model document. The Role fact type
can be read as Type plays Role in Fact Type. This fact
type associates types with the roles they play in various fact
types. RefScheme is similar to the Role fact type, except
that it asserts that the role being defined is part of the refer-
ence scheme for the type playing that role. Figure 4 shows
some examples of fact instances rendered in XCML. Figure
3 gives the general flavour of XCML, but it omits many of
the declarations, the definition of the quality metrics and the
uniqueness constraints (for these, see the full model docu-
ment on the web).

1http://cml.randomresearch.net/xcml/surveillance

<xcml:model
xmlns:xcml=‘http://nicta.com.au/xcml’
xmlns:s=‘http://example.com/surveillance’>
<!-- Define the entity types ------------------>
<xcml:Declaration>

<id>s:Sensor</id>
<type>xcml:EntityType</type>

</xcml:Declaration>
<xcml:SubtypeOf>

<subtype>s:MobileSensor</subtype>
<supertype>s:Sensor</supertype>

</xcml:SubtypeOf>
<!-- Define the fact types -------------------->
<xcml:Declaration>

<id>s:MobileSensorAtTimeLocatedAtPosition</id>
<type>xcml:FactType</type>

</xcml:Declaration>
<xcml:Role>

<type>s:MobileSensor</type>
<role>sensor</role>
<factType>

s:MobileSensorAtTimeLocatedAtPosition
</factType>

</xcml:Role>
<xcml:Role>

<type>xcml:DateTime</type>
<role>time</role>
<factType>

s:MobileSensorAtTimeLocatedAtPosition
</factType>

</xcml:Role>
<xcml:Role>

<type>s:Position</type>
<role>position</role>
<factType>

s:MobileSensorAtTimeLocatedAtPosition
</factType>

</xcml:Role>
<xcml:Role>

<type>s:Position</type>
<role>position</role>
<factType>

s:PositionIdentifiedByCoordinates
</factType>

</xcml:Role>
<xcml:Role>

<type>xcml:integer</type>
<role>id</role>
<factType>s:SensorIdentifiedById</factType>

</xcml:Role>
<xcml:RefScheme>

<type>s:Sensor</type>
<role>sensor</role>
<factType>s:SensorIdentifiedById</factType>

</xcml:RefScheme>
</xcml:model>

Figure 3. A partial serialisation of the model
in Figure 2.

<xcml:Declaration>
<id>example:MSensor1</id>
<type>s:MobileSensor</type>

</xcml:Declaration>
<s:SensorIdentifiedById>
<sensor>example:MSensor1</sensor>
<id>123</id>

</s:SensorIdentifiedById>
<s:MobileSensorAtTimeLocatedAtPosition>
<sensor>example:MSensor1</sensor>
<time>Mon Jul 10 10:29:58 AEST 2006</time>
<position>example:Pos1</position>

</s:MobileSensorAtTimeLocatedAtPosition>

Figure 4. A partial serialisation of an instance
conforming to the model of Figure 2.

4.3. Querying and Reasoning

XCML is intended primarily as an XML exchange for-
mat; its design does not limit the querying and reasoning
support for CML. There are a variety of query languages
(as well as other tool support) for ORM, which can be lever-
aged for querying of instances of CML models. In addition,
Henricksen et al. [8] have developed a situation logic which
can be used in conjunction with CML to support high-level
context querying and reasoning. This incorporates support
for uncertainty and efficient forms of universal and existen-
tial quantification. However, one form of reasoning that is
not currently supported by the situation logic is reasoning
over multiple context models, which can require mapping
of concepts from one model to another. As XCML intro-
duces the ability to assert relationships between concepts
in separate context models, it can be leveraged to add this
additional form of reasoning in XCML-based context man-
agement systems.

5. Related Work

A significant body of previous work has been done on
modelling context using a variety of ontology languages, in-
cluding RDF, OWL and DAML+OIL. One early approach
for Web-based applications to exchange context informa-
tion was CC/PP [11], which was standardised as a W3C
recommendation during 1998-2004. CC/PP focused on the
simple kinds of context information and user preferences
needed to support Web content adaptation for mobile de-
vices, and did not address issues such as capturing data
quality or supporting reasoning.

One of the earliest modelling approaches to address in-
teroperability and reasoning was the Context Ontology Lan-
uage (CoOL), developed by Strang et al. [13], which pro-
vided a simple “Aspect-Scale-Context” conceptual model
with mappings into OWL, DAML+OIL and F-Logic. CoOL
supports mapping of information between context models
using inter-ontology relationships, and as well as reason-
ing to “complete” an ontology by computing implicit rela-
tionships, such as subclass relationships. Other more recent
work that supports reasoning and interoperability includes
Wang et al.’s OWL-based context modelling approach [14]
and Chen et al.’s set of ontologies (SOUPA) [4] which de-
fine a broad, reusable set of context types. These solutions
all facilitate the exchange of context information in hetero-
geneous distributed systems, but do not have correspond-
ing high-level graphical representations that are suitable for
design purposes (whereas CML is designed with the high-
level modelling constructs as a primary focus).

Finally, Bauer et al. [1] have defined the Augmented
World Modeling Language (AWML) and the accompanying
Augmented World Query Language (AWQL). These lan-

guages are defined using XML Schema. AWML enables
objects within the physical world to be described using co-
ordinates, names, addresses relationships and so on. AWQL
is the method by which AWML repositories can be queried.
The response to an AWQL query is a set of matching ob-
jects described in AWML. Because AWML is defined us-
ing XML Schema, which does not support concepts such as
multiple inheritance, some object properties must be mod-
elled externally with another schema language. It is unclear
exactly what kinds of constraints (e.g., many-to-many, ring,
and subset) can be modelled with AWML (or the external
schema language). As with CoOL and SOUPA, AWML
was designed primarily to facilitate exchange of context in-
formation and, to our knowledge, there is no high-level rep-
resentation specifically for design purposes.

6. Conclusions and Future Work

XCML provides several features that make it well suited
for representing context information in distributed environ-
ments. Foremost among these features is the trivial map-
ping to and from the graphical CML notation. This is cou-
pled with a range of properties that allow models repre-
sented in XCML to be easily extended and merged without
having to re-serialise the graphical model. Since CML is
a superset of ORM, XCML can be used to serialise ORM
diagrams as well. We have developed an XCML parser/-
validator in J2SE 1.5.0 with support for the more common
ORM/CML constraints. We are now developing a platform
for distributing context models and information, in XCML
form, throughout a pervasive computing environment.

We are working to define the CML meta-model (i.e., the
base XCML document) in terms of XML Schema, so that
light-weight processes can validate an XCML model docu-
ment with standard XML tools. This is useful where it may
not be feasible to build an in-memory ORM/CML model,
but where it is still necessary to check whether an XCML
model is valid. In addition, we are investigating methods
of automatically generating XML Schema documents from
XCML model documents (using XSLT), so that XCML in-
stance documents can also be partially validated with stan-
dard XML tools.

7. Acknowledgements

National ICT Australia is funded by the Australian Gov-
ernment’s Department of Communications, Information
Technology, and the Arts; the Australian Research Council
through Backing Australia’s Ability and the ICT Research
Centre of Excellence programs; and the Queensland Gov-
ernment.

References

[1] M. Bauer, C. Becker, J. Hähner, and G. Schiele. Con-
textCube - providing context information ubiquitously. In
23rd International Conference on Distributed Computing
Systems Workshops, pages 308–313. IEEE Computer Soci-
ety, May 2003.

[2] L. Bird, A. Goodchild, and T. Halpin. Object Role Mod-
elling and XML-Schema. In 19th International Confer-
ence on Conceptual Modeling (ER), volume 1920 of Lecture
Notes in Computer Science, pages 309–322. Springer, 2000.

[3] S. Buchholz, T. Hamann, and G. Hubsch. Comprehen-
sive Structured Context Profiles (CSCP): Design and experi-
ences. In 1st Workshop on Context Modeling and Reasoning
(CoMoRea), PerCom’04 Workshop Proceedings, pages 43–
47. IEEE Computer Society, March 2004.

[4] H. Chen, T. Finin, and A. Joshi. The SOUPA Ontology
for Pervasive Computing, pages 233–258. Ontologies for
Agents: Theory and Experiences. Birkhäuser Basel, 2005.

[5] J. Demey, M. Jarrar, and R. Meersman. A markup language
for ORM business rules. In International Workshop on Rule
Markup Languages for Business Rules on the Semantic Web
(RuleML), Sardinia, June 2002.

[6] T. A. Halpin. Conceptual Schema and Relational Database
Design. Prentice Hall Australia, Sydney, 2nd edition, 1995.

[7] T. A. Halpin. Information Modeling and Relational
Databases: From Conceptual Analysis to Logical Design.
Morgan Kaufman, San Francisco, 2001.

[8] K. Henricksen and J. Indulska. Developing context-aware
pervasive computing applications: Models and approach.
Journal of Pervasive and Mobile Computing, 2(1):37–64,
Feb. 2006.

[9] K. Henricksen, J. Indulska, and T. McFadden. Modeling
context information with ORM. In OTM Federated Confer-
ences Workshop on Object-Role Modeling (ORM), volume
3762 of Lecture Notes in Computer Science, pages 626–635.
Springer, November 2005.

[10] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A Semantic Web Rule
Language Combining OWL and RuleML, 2004.

[11] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm,
M. H. Butler, and L. Tran. Composite capability/preference
profiles (CC/PP): Structure and vocabularies 1.0. W3C Rec-
ommendation, 15 January 2004.

[12] N. Noy and A. Rector. Defining n-ary relations on the se-
mantic web. W3C Note, July 2006.

[13] T. Strang, C. Linnhoff-Popien, and K. Frank. CoOL: A
Context Ontology Language to Enable Contextual Interop-
erability. In 4th International Conference on Distributed Ap-
plications and Interoperable Systems (DAIS), volume 2893
of Lecture Notes in Computer Science, pages 236–247.
Springer, 2003.

[14] Z. Wang, D. Zhang, T. Gu, J. Dong, and H. K. Pung. Ontol-
ogy based context modeling and reasoning using OWL. In
Workshop on Context Modeling and Reasoning (CoMoRea),
PerCom’04 Workshop Proceedings, pages 18–22, Orlando,
March 2004. IEEE Computer Society.

