
Scalable Location Management for

Context-Aware Systems?

Jadwiga Indulska1, Ted McFadden2, Matthias Kind2, Karen Henricksen1

1 School of Information Technology and Electrical Engineering
The University of Queensland, St Lucia QLD 4072 Australia

{jaga, karen}@itee.uq.edu.au
2 CRC for Enterprise Distributed Systems Technology (DSTC)
The University of Queensland, St Lucia QLD 4072 Australia

{mcfadden, mkind}@dstc.edu.au

Abstract. Location information is commonly used in context-aware ap-
plications and pervasive systems. These applications and systems may
require knowledge of the location of users, devices and services. This
paper presents a location management system able to gather, process
and manage location information from a variety of physical and virtual
location sensors. The system scales to the complexity of context-aware
applications, to a variety of types and large number of location sensors
and clients, and to geographical size of the system. The proposed location
management system provides conflict resolution of location information
and mechanisms to ensure privacy.

1 Introduction

Pervasive/ubiquitous systems require context awareness to provide both a seam-
less computing infrastructure and adaptive context-aware applications to mobile
users. Computing devices currently take many forms, from traditional mobile de-
vices such as mobile phones and handheld computers, to networked home appli-
ances, wearable computers and ”smart items” (objects with embedded storage,
computing and communication capabilities [1] which can create communities of
smart items and can interact with other entities).

Pervasive systems need to deal with mobility of users, their devices and their
applications and also with users who may want to change their computing de-
vice whilst running some computing applications. A pervasive computing infras-
tructure should allow users to move their computational tasks easily from one
computing environment to another and should allow them to take advantage of
the capabilities and resources of their current environment. As a result, perva-
sive systems have to be context-aware, i.e., aware of the state of the computing
environment and also of the requirements and current state of computing ap-
plications. One type of context information is location information (e.g., the

? The work reported in this paper has been funded in part by the Co-operative Re-
search Centre Program through the Department of Ind ustry, Science and Tourism
of the Commonwealth Government of Australia.

location of users, devices and services) which needs to be gathered from a vari-
ety of location sensors. The location information can be physical (e.g., location
provided by a GPS device and a variety of other physical sensors), or virtual
(e.g., a calendar application, camera reading, or IP address).

There are already many approaches to define location information, to track
the location of users and devices, to manage such location information, and to
utilize location information to support mobile users. Location management sys-
tems which gather and manage location information can be used for a variety
of purposes and their complexity depends upon their purpose. Such systems
are often used to provide users with information which is specific to user lo-
cation (e.g. tourist guides [2]) or to support the delivery of personalized and
location-sensitive information as in the BlueLocator project [3]. Location infor-
mation can also be used as one of the elements of complex context information
which supports pervasive/ubiquitous systems [4]. As pervasive systems are very
complex and can use location information from a variety of sources and for a va-
riety of purposes, gathering and managing location information is a challenging
task. There are a variety of issues which need to be addressed in such systems,
including: (i) types of location information (many sources and kinds of loca-
tion information), (ii) location resolution and associated errors, (iii) resolution
of conflicting location information, (iv) location information access and privacy
(who can access location information and how can it be used), (v) architectures
of location management systems, and (vi) integration of location management
system with general context management in pervasive systems in a way which
ensures scalability of the whole system.

In this paper we present a scalable location management system (LMS) which
can deal with location information requests of various complexity from simple
location services which deliver a reading from a single user location senor (e.g.
GPS in a PDA) to a complex support of infrastructures in pervasive systems.
The latter requires location information from a variety of sensors and therefore
conflicting location information is possible and privacy issues need to be ad-
dressed. We describe the architecture of such a system and present our solution
for the difficult issue of conflict resolution. We also show how a Platform For
Privacy Preferences (P3P) [5] privacy approach has been integrated into our
LMS to provide a manageable solution for defining privacy rules for location
information.

The structure of this paper is as follows. Section 2 presents an overview of
issues related to processing of location information, describes the architecture
of our location management system and discusses the scalability of this system.
Section 3 describes our solution for resolution of conflicting location information
and compares this solution to the existing IBM approach for aggregation of
location information. Section 4 shows the application of P3P for defining privacy
rules for location information access and illustrates an extension to provide a user
friendly mechanism for defining privacy policies. Section 5 concludes the paper.

2 Challenges in location management

2.1 Sources of location information

Location sensors can be physical or virtual. Physical location sensors provide
information about the position of a physical device. Examples of devices are
GPS receivers, mobile phones, passive and active badges, cameras used for face
recognistion, magnetic-stripe cards and even simple barcodes. Physical location
sensors can provide either position or proximity information. Position sensors at-
tempt to provide the coordinates of a device relative to some coordinate system.
Different sensors will have different resolutions and associated errors. Proximity
sensors locate an entity or device as being within a region but cannot precisely
position the device within that region. Region sizes may range from tens of cen-
timeters (e.g. RFID passive tags) to tens of meters (e.g. Bluetooth and 802.11
cells) to hundreds of meters (e.g. mobile phone cells). Proximity sensors with
overlapping detection regions can form the basis of position sensors (via trian-
gulation or trilateration).

Virtual location sensors extract location information from virtual space, i.e.
software applications, operating systems and networks. Sensor processes can
monitor application events (a networked calendar system, travel booking, etc.),
operating system events (monitoring keyboard or mouse use by a logged-in user,
file server use, etc.) or network events (IP address, etc). The location readings
from virtual sensors usually have to be combined with information from other
sources (e.g. a database of the locations of fixed equipment like magnetic card
readers or desktop computers) to infer physical location information.

2.2 Processing of location information

Sources of location information are heterogenous. Location sensor agents produce
fragments of location information which differ in type, spatiotemporal charac-
teristics (location, orientation, motion, time), resolution (i.e. level of accuracy),
and data format - to list the most important differences. Sensor agents may have
different policies governing when location information is reported.

The location information has to be gathered from sensors and reconciled,
i.e., various types of location information about particular entities (e.g. users,
devices, applications, and smart items) have to be compared and evaluated in
order to compute the location of the entities. Therefore, the location information
represented in formats specific for particular sensor types has to be transformed
to a common format. Moreover, if the location readings provide conflicting infor-
mation such conflicts have to be resolved. Conflicts which stem from differences
in sensor resolutions are easy to resolve. There are, however, numerous conflicts
which go beyond differences between position and proximity location sensors
and also differences in resolution. If a user has many devices (e.g. mobile phone,
PDA, laptop) which can provide physical location information and in addition
the system is able to gather some virtual location information (e.g., from software
agents interacting with the user) the location management system may need to

deal with conflicting information and has to provide a means for resolution of
such conflicts.

When processing location queries another important issue has to be ad-
dressed: privacy of location information. The importance of this issue is illus-
trated by the difficulties that many telecommunication companies currently have
with providing location-based services and which now limit the provision of user
location information to user’s devices only.

2.3 Architecture and scalability

Location management systems gather location information from many sources
and process it to create the final representation available for a variety of clients.
The location management systems developed so far for mobile distributed com-
puting and location-based applications usually have a hierarchical architecture
with the following layers: Application/Presentation Layer, Fusion Layer, Ab-
straction Layer, Reception Layer, and Sensor Layer [6]. The hierarchical archi-
tecture reflects the complex functionality of location management systems as
shown in the following brief description of the functionality of particular layers:
Sensor Layer. The lowest level of the location management architecture is the
Sensor Layer which represents the variety of physical and logical location sensor
agents producing sensor-specific location information.
Reception Layer. The fragments of location information produced by sensor
agents are delivered by the Reception Layer to the Abstraction Layer.
Abstraction Layer. This layer takes sensor-specific location information delivered
by the Reception Layer and transforms it into a standard format. This layer needs
to capture relationships between locations and their identifying features as it
needs to associate attributes (eg. mobile cell identifiers) with physical places (for
example, suburbs). The Abstraction Layer has to provide these transformations
for both physical and virtual location information and needs to provide mappings
between virtual (conceptual) and physical location information.
Fusion Layer. The Fusion Layer aggregates the location information gathered by
the abstraction layer for a particular entity to provide a single, coherent location
of the entity. If there are conflicts in the location information they should be
resolved at this layer.
Application/Presentation Layer. This layer interacts with the variety of clients
of the location management system and therefore needs to address several issues
including access rights to location information (who can access the information
and to what degree of accuracy), privacy of location information (how the loca-
tion information can be used) and security of interactions between clients and
the location management system.

Our location management system in general follows the above hierarchical ar-
chitecture, however some solutions were introduced at particular layers to achieve
our goal which is to provide a scalable location management system able to deal
with conflicts of location information and ensure privacy of location information.

The issue of scalability of location management systems is important as these
systems have to deal with the following challenges:

Application Layer

Fusion Layer

Abstraction Layer

Application

Application

Context

Management

Adaptation

Decision Engine

Application

Sensor
 Sensor
 Sensor

request

notification

Application

Fig. 1. Location Management Architecture

1. Various levels of complexity of location applications from simple tourist guide
applications using one location sensor (e.g. a PDA with a GPS sensor) where
no aggregation of location information is needed, there is no conflict possible
and no location information privacy issues are involved, to location informa-
tion support for infrastructures of pervasive systems which evaluate context
changes (including location changes) to make decisions about application
and/or system adaptation to the changing context.

2. Potential large number of sensors and a large number of clients of the location
management system.

3. Distribution of location management (users moving through domains).
4. Large number of updates of location information for moving objects.

There is a large body of research for the problem described in 4 coming from
the database community, therefore we concentrate in this paper on the first three
problems.
Various levels of complexity. As shown in the architecture of our LMS (Figure
1) simple applications can directly receive location information from the Sensor
Layer, while other applications which require complex processing of location
information are served by several layers.
Large number of sensors and clients. In our location management system we use
a distributed notification service Elvin [7]. It provides the functionality of the
Reception Layer as it forwards notifications between the Sensor Layer and the
Abstraction Layer. The same notification system is used for delivering notifica-
tions about location changes between the Application Layer and the clients of the
location management system unless a synchronous interaction is requested by an
application. Elvin provides a scalable solution as it is able to cope with a large
number of sensors and clients due to selective forwarding of messages. Differ-
ent clients (users, applications, infrastructure of the pervasive system) may have
different requirements with regard to mode of interaction (pull/push) and gran-
ularity of location information. For some clients, the pull mode (client/server) of
interactions may be suitable as they need location information only when they

request it. However, for other clients (e.g. infrastructure of pervasive systems)
the push model (information about location is ”pushed” to the client when the
location information changes) is more appropriate. Our system allows either pull
or push mode to be used for client interactions. As Elvin allows entities to register
for notification about location changes and the granularity of this notification,
this further increases the scalability of our solution. Figure 1 illustrates both the
Reception Layer (Elvin) and the clients’ interactions with the system.

In addition, location information is stored in a persistent repository in the
Abstraction Layer. In our LMS this repository is a relational database. This
allows aggregation of location information (Fusion Layer), including conflict res-
olution, to be performed on demand, in response to user queries, instead of each
time new sensor data is received. There could be a great difference between the
frequency of location updates from sensors and the frequency of location infor-
mation requests from the clients of the location management system. Moreover,
once a location is determined at the Fusion Layer it is cached as a complete
location description which will be valid until another update pertaining to that
entity is received at the Abstraction Layer. As a result, many requests for a single
entity’s location can be served without significantly increasing the cost of gen-
erating the location from individual location fragments if location information
updates are not very frequent.
Distribution of LMS. As pervasive systems may be geographically large and have
a heterogeneous computing and networking infrastructure, one of the scalabil-
ity requirements is distribution of location managers in this infrastructure. Our
location management system can be easily distributed due to the layered ap-
proach and the notification system used. Wide-area coverage can be achieved
by deploying a number of managers implementing the Abstraction Layer which
gather location information from geographically close sensors. Multiple Abstrac-
tion Managers can update a single Fusion Layer manager. The solution allows
distribution of not only the Abstraction Layer but also the Fusion Layer and the
Application/Presentation Layer. On the other hand, if a tracked entity moves
a large distance from its home location management system, provision can be
made for the creation of a visitor location profile in the Abstraction, Fusion and
Application Managers at the new destination.

3 Conflict resolution

The conflict resolution of location information has to take into account differ-
ences in resolution, time of location readings, confidence in readings, and rele-
vance of readings to a particular entity. There already exists an algorithm [8],
developed at IBM, which aggregates location readings from several sensing de-
vices. For n location sensors Di, 1 ≤ i ≤ n, location readings are of the form
Ri = (Ci, Ti, Li), where Ci is the “associative confidence” of device Di, Ti is the
timestamp of the location reading, and Li is the location reading reported by Di.
The associative confidence is a probability that the device reporting a location is
actually at the same location as the user being tracked. The confidence adopted
for a given device depends upon whether it is moving or stationary, with the

rationale being that a moving device generally has a higher probability of being
located with its user than one that has been stationary for a long time. The
algorithm sorts readings by timestamps (such that recent readings are viewed
as more probable than those with older timestamps), then uses associative con-
fidences to resolve conflicts between readings with similar timestamps.

The algorithm works reasonably well, if (i) all the location readings come
from physical (position or proximity) sensors, (ii) sensor readings are frequent,
and (iii) the readings are reasonably correct (i.e., the sensing device is actually
located with the user). Let’s assume that a user left a phone in a taxi (which is
driven by somebody else), recently employed a swipe card to enter a room, and is
now typing at a computer. There will be three location readings, originating from
the swipe card, operating system and phone. Assuming that the timestamps of
the readings are close, the associative confidence will be taken into account and
the reading from the mobile phone will be erroneously selected.

It can be seen that the algorithm is not general enough to cope with physical
and logical sensors and a variety of interaction types these sensors can have with a
location management system. We argue that association confidence values should
account for more than the mobility of the sensor. The keyboard is stationary
but it is active which provides a high confidence in the reading. The phone is
moving but it is not active (there were no recent calls), which should provide
less confidence. Moreover, sensors like cameras or swipe cards provide location
readings with some accuracy but the confidence of such readings is only high
at time of the reading. To deal with these problems, our location management
system defines different confidences for different types of sensors. The confidences
for sensors are based on whether the sensor is (i) mobile and (ii) active (where
active has a meaning depending on the sensor type).

Using timestamps as the main deciding factor in conflict resolution is also
inappropriate in general location management systems. Some sensors produce
notifications when a state changes (e.g. the operating system sends notifications
when the user starts or stops using a keyboard), therefore the readings will be
valid for a long time. In our approach, timestamps are only used to calculate
confidence values for particular sensor readings and are not directly used to
resolve the conflicts. A form of history is built into the algorithm, however,
as sensors that are found to be producing incorrect readings are assigned a
“diminished confidence” value. This implies that less weight is subsequently
placed on their readings, until the readings are again found to be correct and
the status is removed.

Our conflict resolution algorithm, shown in Figure 2, assumes that all location
readings are mapped to a representation consisting of a set of coordinates and
a resolution. The algorithm aggregates location readings into non-conflicting
subsets, then performs conflict resolution amongst the subsets using confidence
values. For each subset, a representative reading is selected; this is chosen as the
reading with the smallest resolution, which is always fully contained in all of the
other readings in the subset. Its confidence is calculated as the average of the
confidences for the set, adjusted to account for cardinality such that larger sets

1. For each reading, compute its confidence as the product of the stationary/ mobile
and active/non-active confidences of the corresponding sensor (unless the sensor
has the “diminished confidence” value, in which case this value is adopted instead).

2. Compare each pair of location readings; if one reading is fully contained within the
other, the readings are merged into a common subset for step 3.

3. For each subset of n consistent readings produced in step 2, compute a represen-
tative reading as follows:
– The coordinates and resolution of the reading possessing the best (smallest)

resolution are adopted.
– The confidence for the representative reading is computed as the average of

the confidence values for the group, adjusted according to the cardinality of
the group. If the confidence values for the group are c1, ..., cn, this is:

1 −

n
P

i=1

1 − ci

n2

4. The representative readings produced in step 3 are ranked by confidence, and the
reading with the highest confidence selected as the result.

5. The “diminished confidence” value is set for sensors that produced readings con-
flicting with the reading chosen at 4, and is removed (if necessary) for sensors that
produced consistent readings.

Fig. 2. Conflict resolution algorithm.

of consistent readings are assigned higher confidences. Finally, the representative
readings are ordered by confidence. If there is only one subset, its representative
reading is chosen as the correct reading; otherwise, the reading with the highest
confidence is selected.

As the conflict resolution algorithm is applied dynamically during location
queries, efficiency is crucial. Our algorithm completes in O(n2) time, where n

is the number of location readings that need to be resolved. As only the most
recent reading from each sensor is considered, n is bounded by the number of
distinct location sensors that can be used to track a given individual, and is
therefore small. When evaluated against sample data sets, the algorithm per-
forms efficiently with high accuracy, and we aim to further improve the accu-
racy by exploiting historical data (past movements of the object being tracked)
to resolve readings with similar confidence values.

4 Privacy

Privacy is extremely important to individuals and is reflected in the adoption of
very strict privacy laws is many countries [9]. Protection of location information
from unauthorized use is paramount to the success of emerging location-based
services. The problem of maintaining location privacy will become greater in
future pervasive systems as the number of sensors and services that can infer a
user’s location increases dramatically.

(a) Location Privacy Editor (b) Query Interface

Fig. 3. User Interfaces

Location management systems are presented with the challenge of incorpo-
rating privacy protection at the Application Layer while still allowing users to
release location information to trusted service providers in a controlled and ac-
countable fashion. As a precursor to privacy, basic security must be provided. At
a minimum, location information exchange must be encrypted and service clients
must be authenticated. Key policies that a location manager must address for
privacy are:

– request policy (which allow a client to define the purposes for which requested
location information will be used); and

– access control policy (which allow a provider to define under what context
access to location information will be granted and what location detail will
be provided).

There are no comprehensive solutions for location access control and privacy
protection in pervasive systems as yet. The P3P initiative is a promising ap-
proach to providing privacy for users accessing web resources. P3P defines an
XML based policy language allowing web services to define how potentially sen-
sitive information collected from clients will be used, and a mechanism for user

agents to retrieve these policies. The related P3P Preference Exchange Language
1.0 (APPEL1.0) [10] defines a policy language which allows users to specify pri-
vacy preferences in rule-sets. A browser or other user agent then uses the APPEL
rule-sets to evaluate the acceptability of web service P3P policies.

In our location management system we use P3P (and APPEL) to provide
mechanisms ensuring privacy of location information. Each location request is
accompanied by a P3P policy. This policy may be static or dynamically gener-
ated by a client agent. Upon receiving a location query, the location manager
evaluates the query and the accompanying P3P policy using the appropriate
APPEL preferences based on the user’s current context. Based on the APPEL
evaluation the request is either satisfied, denied, or partially satisfied (i.e., the
returned location information is generalized.) Other systems addressing privacy
in the pervasive space are also based on P3P [11, 12]. Our early experience with
applying P3P to location information yielded mixed results:

– It was possible to use P3P to define location request policy, and APPEL
rule-sets for access control.

– However, the use of generic P3P policy / XML editors [13, 14] made the gen-
eration of location related policies and preferences non-intuitive and dificult
for users.

To address usability issues related to the definition of privacy policy (for both
request and access control) we developed domain specific user interfaces at the
Application Layer that dynamically generate P3P policies and preferences.

<RULESET xmlns="http://www.w3.org/2001/02/APPELv1"

xmlns:p3p="http://www.w3.org/2000/12/P3Pv1">

<RULE behavior="limited" description="Allow limited access to manager.">

<p3p:POLICY><p3p:STATEMENT>

<p3p:RECIPIENT connective="or">

<p3p:same>manager</p3p:same></p3p:RECIPIENT>

<p3p:PURPOSE connective="or">

<p3p:other-purpose>get in contact</p3p:other-purpose>

<p3p:other-purpose>urgent delivery</p3p:other-purpose>

<p3p:other-purpose>check if available</p3p:other-purpose>

</p3p:PURPOSE>

</p3p:STATEMENT></p3p:POLICY>

</RULE>

</RULESET>

Fig. 4. Generated APPEL Privacy Ruleset

Figure 3 (a) illustrates the user location privacy policy editor. The editor
allows the definition of context sensitive privacy rules. A user may specify differ-
ent privacy rules for different location zones. For example, a public zone would
be an office lobby and a private zone, a restroom. For rule definition, the role
of the requesting agent is considered (visitor, staff, manager). Finally, the level
of location detail returned in a given situation can be adjusted. Figure 4 shows

one of the compact APPEL rule-sets automatically generated from the GUI il-
lustrated in Figure 3 (a). In the current implementation, the detail of location
information returned is determined by the resultant APPEL behavior (block,
limited, request) and context sensitive post-processing by the location manager.
In the future this will be enhanced by defining location detail categories in the
APPEL rule persona attribute. This will allow a more granular approach to
location detail control using APPEL itself.

An application specific P3P policy generator was also implemented for a
simple location client, allowing one user to query the location of another (Figure
3 (b)). The interface is simple, leaves little room for error, and dynamically
generates a P3P policy (Figure 5) for each location query.

<POLICIES xmlns="http://www.w3.org/2002/01/P3Pv1">

<POLICY discuri="disclaimer.html" opturi="opt-in-out.html">

<ENTITY>...</ENTITY>

<ACCESS><nonident/></ACCESS>

<STATEMENT>

<PURPOSE><other-purpose>check if available</other-purpose></PURPOSE>

<RECIPIENT><same>role=manager;user=mcfadden</same></RECIPIENT>

<RETENTION><no-retention/></RETENTION>

</STATEMENT>

</POLICY>

</POLICIES>

Fig. 5. Generated Policy

Our approach transforms a manual and cumbersome preparation of policies
and preferences for location information into a dynamic generation of such poli-
cies and preferences from simple user GUIs.

5 Conclusions

The proliferation of mobile devices has created a demand for location-based ser-
vices. There is a large body of research on the basic issues of location-based
computing: technologies for location sensors, location determination for mobile
devices, location representation formats, and early approaches to aggregation of
location information (conflict resolution). In this paper we presented the archi-
tecture and functionality of a location management system, which is able to sup-
port not only location-aware applications using a limited number of sensors, but
can also be used as a part of the infrastructure of large scale pervasive systems. In
the latter case, the location management system feeds location information into
a more comprehensive context management system. Such location management
systems are very complex due to the enormous variety of physical and virtual
location sensors, very large scale (in terms of sensors and entities supported by
the system), high probability of conflicts in location information and complex lo-
cation access and privacy rules. The location management system which we have
developed and integrated with our infrastructure for pervasive systems allows ei-
ther asynchronous or synchronous interactions between clients and the location

management system, scales to large numbers of sensors and clients, and allows a
geographical distribution of the location management system. The algorithm for
the resolution of conflicting location information developed for this system has
low computational complexity and provides highly accurate results on a variety
of sample location data. The system uses P3P and APPEL as mechanisms for
supporting privacy of location information and provides a user friendly interface
for automatic generation of privacy policies and preferences.

References

1. Beigl, M., Gellersen, H., Schmidt, A.: Mediacups: Experience with design and use
of computer-augmented everyday artefacts. Computer Networks,Special Issue on
Pervasive Computing 35 (2001) 401–409

2. Cheverest, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a
context-aware electronic tourist guide: some issues and experiences. In: Proceedings
of the Conference on Human Factors and Computing Systems. (2000)

3. Chen, Y., X.Chen, Ding, X., Rao, F., Liu, D.: Bluelocator: Enabling enterprise
location-based services. In: Proceedings of the Third International Conference on
Mobile Data Management, IEEE Computer Society (2002)

4. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in
pervasive computing systems. In: Proceedings of The First International Confer-
ence on Pervasive Computing, Pervasive 2002. Volume 2414 of Lecture Notes in
Computer Science., Zurich, Switzerland, Springer (2002) 169–180

5. Cranor, L., Langheinrich, M., Marchiori, M., Reagle, J.: The platform for privacy
preferences 1.0 (P3P1.0) specification. http://www.w3.org/TR/P3P/ (2002) W3C
Recommendation.

6. Leonhardt, U.: Supporting Location-Awareness in Open Distributed Systems. PhD
Thesis, Imperial College, London (1998)

7. Segal, B., Arnold, D., Boot, J., Henderson, M., Phelps, T.: Content based routing
with elvin4. In: Proceedings of the AUUG2K Conference. (2000)

8. Myllymaki, J., Edlund, S.: Location aggregation from multiple sources. In: Pro-
ceedings of the Third International Conference on Mobile Data Management, IEEE
Computer Society (2002)

9. Beinat, E.: Privacy and location-based services. Geo Informatics (2001)
http://www.geoinformatics.com/issueonline/issues/2001/09_2001/pdf_09_

20%01/14_17_euro.pdf.
10. Langheinrich, M., Cranor, L., Marchiori, M.: A P3P Preference Exchange Language

(APPEL 1.0). http://www.w3.org/TR/P3P-preferences/ (2002) W3C Working
Draft.

11. Langheinrich, M.: A privacy awareness system for ubiquitous computing envi-
ronments. In Borriello, G., Holmquist, L., eds.: 4th International Conference on
Ubiquitous Computing (UbiComp2002). Number 2498 in LNCS, Springer-Verlag
(2002) 237–245

12. Myles, G., Friday, A., Davies, N.: Preserving privacy in environments with location
based applications. IEEE Pervasive Computing 2 (2003) 56–64

13. IBM Corporation: P3P Policy Editor (2002) http://www.alphaworks.ibm.com/

tech/p3peditor.
14. Joint Research Center European Commission: JRC P3P APPEL Privacy Prefer-

ence Editor (2002) http://p3p.jrc.it/downloadP3P.php.

