
A Survey of Middleware for Sensor Networks:
State-of-the-Art and Future Directions

Karen Henricksen and Ricky Robinson
Queensland Research Laboratory, National ICT Australia (NICTA)

{karen.henricksen,ricky.robinson}@nicta.com.au

ABSTRACT
In future computing environments, networked sensors will
play an increasingly important role in mediating between
the physical and virtual worlds. However, programming
sensor networks, and the applications that depend on the
data they produce, is extremely challenging. The need for
suitable middleware to address this problem is evident. In
the last few years, various middleware solutions for sensor
networks have emerged. These differ in terms of their mod-
els for querying and data aggregation, and their assumptions
about the topology and other characteristics of the network.
Naturally, the assumptions made for each particular mid-
dleware limit its potential applicability. Most of the current
solutions provide relatively simple query abstractions, and
therefore are not suitable for applications that have sophis-
ticated requirements for processing of sensor data in the
network. This paper presents a survey and analysis of the
current state-of-the art in the field, highlighting the open re-
search challenges. It also draws on the authors’ experience
with developing middleware for context-aware systems - that
is, systems that rely on sensor-derived data to intelligently
adapt their behaviour - to propose some future directions
for the development of middleware for sensor networks.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Middleware

Keywords
Sensor networks, context-aware systems

1. INTRODUCTION
Deployments of sensor networks have radically increased

over the past few years as wireless sensor platforms such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MidSens’06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-424-3/06/11 ...$5.00.

as Berkeley motes have become widely available. This has
spawned new research in the development of middleware and
software engineering techniques that can simplify the pro-
gramming of sensor network applications. The proposed
solutions in this area facilitate high-level querying of sensor
data, help to mask the distribution and heterogeneity in the
sensor network, and address resource constraints by provid-
ing, for example, power-aware routing and query processing.

Much of the work in the field has taken a bottom-up ap-
proach. That is, given the available sensor network hard-
ware, the research has looked at how to provide software
engineering abstractions that assist with extracting data
from the network without requiring application developers
to deal with low-level hardware and networking issues. For
example, several solutions have attempted to make it pos-
sible to query a sensor network in much the same way as
a centralised database, without dealing with issues such as
routing of the queries to appropriate nodes in the network.
This paper provides a survey of the current state-of-the-art,
classifying the solutions according to the types of abstrac-
tion they support. In large part, the solutions are inspired
by middleware for more traditional distributed systems - for
example, by work on distributed databases, tuple spaces and
publish/subscribe systems.

An artefact of the current bottom-up approach is that
the solutions are typically focused more on constraints of
sensor network hardware than on application requirements.
This implies that, while the proposed solutions may provide
higher level abstractions than would be available otherwise,
the abstractions may still not be suitable for many applica-
tions that could be built using sensor networks.

An alternative is the top-down approach, in which a deep
understanding of application requirements is a primary driver
for the design of the middleware. To some extent, this is the
approach that has been taken in the field of context-aware
computing. Context-aware systems consist of software that
automatically adapts to aspects of the environment, such as
the user’s current location and activity, the time of day, and
the presence of other people in the user’s vicinity. The field
of context-aware computing has been driven to a large extent
by HCI researchers seeking to employ context-awareness as a
technique for gathering “implicit” user input [20] from sen-
sors, in order to reduce the amount of explicit input that
is required from users. This is especially relevant for mo-
bile/pervasive computing environments, where many tasks
may simultaneously compete for the user’s attention.

A commonly cited example of a context-aware application
is a tourist guide that adapts its presentation of information

to emphasise nearby landmarks and facilities, using a loca-
tion sensor such as a GPS device to determine the user’s
current position. A more sophisticated example is a “smart
home” application that assists elderly or disabled occupants
of the home by monitoring their activities for unusual events
such as falls, and providing reminders and assistance for
tasks such as meal preparation [19]. Context-aware appli-
cations rely on sensors to observe aspects of the context.
The software required to interface with the sensors and to
map the sensor outputs to useful, high-level contextual in-
formation is typically very complex, so recent efforts have
been made to develop middleware that handles all or part of
this task. This middleware has made it possible to develop
context-aware applications that build upon sensing systems
that increasingly resemble sophisticated, heterogeneous sen-
sor networks, rather than simple collections of stand-alone
sensors. While almost all of the existing middleware so-
lutions are generic enough to support a very wide variety
of context-aware applications, most have been informed by
application-driven requirements for sophisticated processing
and interpretation of sensor data.

The authors of this paper have been involved in develop-
ing middleware for context-aware systems for several years
[9, 10, 11, 13], and it is from this perspective that they
analyse the current state-of-the-art in middleware for sen-
sor networks in this paper. Although it is not the purpose of
this paper to present a detailed discussion of middleware for
context-aware systems (for a survey, the reader is referred to
[11]), a brief discussion of the relative strengths and weak-
nesses of middleware for sensor networks versus middleware
for context-aware systems appears in Section 3. This discus-
sion highlights some likely future directions for middleware
for sensor networks.

The paper is structured as follows. Section 2 presents
an overview of current middleware solutions for sensor net-
works, focusing on the software engineering abstractions they
provide. Section 3 provides an analysis of these solutions,
highlighting a variety of open research challenges. It also
proposes some future directions for the field, drawing in
large part from the authors’ background in the development
of middleware for context-aware computing. Section 4 sum-
marises the contributions of the paper.

2. STATE-OF-THE-ART IN MIDDLEWARE
FOR SENSOR NETWORKS

The goal of middleware for (wireless) sensor networks (WSNs)
is summarised as follows by Römer et al. [18]:

The main purpose of middleware for sensor net-
works is to support the development, mainte-
nance, deployment, and execution of sensing-based
applications. This includes mechanisms for for-
mulating complex high-level sensing tasks, com-
municating this task to the WSN, coordination of
sensor nodes to split the task and distribute it to
the individual sensor nodes, data fusion for merg-
ing the sensor readings of the individual sensor
nodes into a high-level result, and reporting the
result back to the task issuer. Moreover, appro-
priate abstractions and mechanisms for dealing
with the heterogeneity of sensor nodes should be
provided.

As the field of sensor networks is relatively new, there is

no consensus yet even on fundamental design issues like the
following:

• what communication paradigms are appropriate for
routing information in the network; and

• what query primitives are necessary to support ade-
quately powerful yet efficient querying of the sensor
data (for example, aggregation primitives and spatial
and temporal query primitives)?

Choices of routing protocols and query languages have
been driven in recent solutions by strict assumptions about
the requirements of the applications for which the sensor
network is built, the topology and characteristics of the
network, and the characteristics of the sensor nodes them-
selves (heterogeneity, resource poorness, etc.). Simplifying
assumptions are commonly made - for example, routing is-
sues are avoided in some solutions by assuming a single hop
between the sensor node and the “sink” node that is inter-
ested in the sensor data [4], while in other solutions a fixed
network topology is assumed.

According to its particular assumptions, each of the pro-
posed middleware solutions draws on selected aspects of
traditional middleware for distributed systems, such as dis-
tributed databases or publish/subscribe systems. Most so-
lutions fit into one of the following categories:

• database-inspired approaches, which use SQL-like queries;

• tuple space approaches, which build on the tuple space
abstraction made popular by Linda [7];

• event-based approaches, which use event correlation to
aggregate sensor data; and

• service discovery based approaches, which use service
discovery protocols to locate sensors that can meet ap-
plications’ data requirements.

The remainder of this section surveys solutions in these four
categories. Note that the survey does not cover “virtual ma-
chine” type solutions, such as Maté [14] and SensorWare [2],
which aim purely to simplify programming without provid-
ing query processing and routing features.

2.1 Database-Inspired Solutions
The most common approach for querying sensor networks

is an SQL-inspired approach. This allows a simple, declar-
ative style of querying at the application level. Examples
of solutions that adopt this approach are COUGAR [1],
SINA [21] and TinyDB [16]. Some of the work in this area
has been on pure sensor database systems, which essen-
tially provide a distributed database solution appropriate
for resource-constrained sensor networks, focusing on effi-
cient query routing and processing. COUGAR and TinyDB
fall into this category. SINA differs in that it uses an SQL-
like language for expressing queries, but also provides other
functions which are outside the scope of traditional database
systems. In this section, the pure sensor database systems
are presented first, and then SINA is presented for contrast.

2.1.1 COUGAR and TinyDB
The COUGAR and TinyDB sensor database systems are

designed for use by relatively simple data collection applica-
tions, such as environmental monitoring applications. The

main forms of data processing they support within the net-
work are selection and aggregation based on arithmetic func-
tions such as summation and averaging.

To some extent, both are concerned with power conser-
vation, providing query processing strategies that aim to
conserve resources. In this respect, TinyDB is more sophis-
ticated than COUGAR - for example, it can calculate the
frequency of sampling that is required to extend the battery
life of a node to the requested query lifetime, and also uses
a routing structure called a semantic routing tree to help
sensor nodes accurately determine when queries need to be
routed to their children in the routing tree.

The query languages used by the sensor database systems
are extensions of SQL that support:

• temporal and data streaming concepts that allow spec-
ification of when sensor data should be sampled and
for how long; and

• event-based queries - TinyDB allows queries to be trig-
gered or terminated by events generated by other queries
or by software running on a sensor node.

The following is an example TinyDB query (from [16]):

SELECT AVG(volume), room FROM sensors

WHERE floor = 6

GROUP BY room

HAVING AVG(volume) > threshold

SAMPLE PERIOD 30s

This query reports the average noise volume for rooms on
the 6th floor in which the average volume for the sensors
in the room exceeds a given threshold. The results of this
query are delivered every 30 seconds. It is assumed that
each sensor node either has hard-coded information about
its position or else has positioning capabilities.

A key limitation of sensor database systems is the as-
sumption that sensor nodes are largely homogeneous. Sen-
sor nodes must agree in advance on the data types/relations
that will be used at every node. In TinyDB, every node has
an identically structured sensors table containing local sen-
sor data. Each type of sensor (light, temperature, etc.) cor-
responds to an attribute (column) in this table. Some nodes
may be missing a subset of the sensors, in which case they
simply record null values for the corresponding attributes.
This is acceptable for sensor networks in which only a small
and fixed set of sensors may be present; however it is prob-
lematic for sensor networks that include many sensor types,
and also networks in which graceful evolution is required. In
COUGAR, it is assumed that each sensor type has a stan-
dard Abstract Data Type representation which is used at all
nodes. It is not possible to insert sensing nodes with new
sensing capabilities into the network in an ad hoc manner.

In addition, the sensor database systems have not been
developed to support rich sensor types - for example, surveil-
lance cameras that support sophisticated image processing
functions such as face recognition. Rather, they target sim-
ple, resource-poor sensor platforms such as Berkeley motes.
If some resource-rich devices were introduced as part of the
sensor network, the current query processing and energy
conservation strategies would most likely need to be com-
pletely reworked.

Bonnet et al. [1] point out a final limitation: sensor data
capture observations, not facts. Therefore, adopting a query

language that has semantics that are close to those of SQL
may not be appropriate. Further research is required to ad-
dress how to take uncertainty and data quality into account
when formulating and processing queries on sensor networks.

2.1.2 SINA
SINA [21] can be regarded as a full middleware archi-

tecture for sensor networks, rather than a sensor database
system. It provides not only support for SQL-like queries,
but also for scripting using a language called SQTL (Sen-
sor Query and Tasking Language). This language provides
primitives for sensor hardware access, communication, and
event handling. SQTL scripts can be sent around the net-
work at run-time.

The SINA data model is more flexible than those of the
sensor database systems described in the previous section;
data is stored in an associative spreadsheet which uses attribute-
based naming to describe cells. A small set of cells is prede-
fined, but others can be added as required. SINA’s support
for changing network topologies is also more sophisticated,
as it can handle problems like mobility of the querying (sink)
node.

It is unclear whether SINA has been implemented.

2.2 Tuple Space Solutions
The database approaches described in the previous sec-

tion provide a form of “shared memory” model, in which
queries can be submitted to the sensor network as if the
data was stored in a centralised repository. A similar ap-
proach, but with a different query paradigm, is provided by
the TinyLIME middleware [4]. TinyLIME is based on the
tuple space shared memory model made popular by Linda
[7]. In this model, applications add and read/remove data
from a common tuple space using “in” and “out” operators.

TinyLIME [4] is designed for environments in which clients
typically only need to query data from local sensors. It does
not provide multi-hop propagation of data through the sen-
sor network - the only way clients can obtain data from a re-
mote location is by obtaining it from other clients in that lo-
cation. The design of TinyLIME assumes that sensor nodes
are sparsely distributed, while clients move around, access-
ing local resources. These assumptions avoid the need for
the middleware to address the complexities of query routing;
however, they also severely limit the kinds of applications for
which TinyLIME is suitable.

TinyLIME is an extension of the LIME (Linda In Mobile
Environments) middleware developed for mobile ad hoc net-
works, implemented on top of TinyOS with special support
for a low-power, resource constrained computing environ-
ment. The model used by both LIME and TinyLIME is
that of transiently federated tuple spaces - that is, the tuple
spaces of a pair of devices are temporarily federated when-
ever the devices are within direct networking range (i.e., a
single hop) of one another.

Applications create tuple templates to subscribe for data
that is of interest to them. TinyLIME subscriptions can
specify the required freshness (i.e., how often data should be
updated) and restrictions on values (e.g., only temperatures
between 20 and 30 degrees). In order to create subscrip-
tions, applications must know the format of tuples produced
by sensor nodes. As TinyLIME is designed for motes run-
ning TinyOS, there are predefined formats for the standard
sensors used by motes.

The ability of TinyLIME to support evolution in the sen-
sor network is reasonably good (similar to that of SINA).
However, as stated above, the applications for which TinyLIME
is appropriate are limited. This is not a limitation of tuple
space approaches in general, but of the design of TinyLIME.
However, implementing a scalable tuple space middleware
capable of federating all of the connected nodes of a sensor
network into a single distributed tuple space, taking into
account resource considerations and mobility, would be ex-
tremely challenging. To the authors’ knowledge, no imple-
mentations like this currently exist. There are, however,
some implementations of publish/subscribe (event-based) sys-
tems which support a style of subscription and information
delivery that has similarities with distributed tuple spaces.
Event-based systems are described in the following section.

2.3 Event-Based Solutions
Advocates of event-based and publish/subscribe middle-

ware have long argued that they are appropriate in systems
in which mobility and failures are common, as they sup-
port strong decoupling of event producers and subscribers.
Therefore, it is not surprising that event-based solutions are
starting to be used as the basis for middleware for sensor
networks. However, work in this area remains immature.
Yoneki and Bacon [23] have produced a reasonably sophis-
ticated set of event operators for describing event patterns
in sensor networks. The main distinction between the event
description language and the subscription languages used in
previous publish/subscribe systems is that it supports not
only standard operators, including conjunction, disjunction,
negation, concatenation and iteration, but also spatial and
temporal restrictions. This allows subscriptions such as the
following (from [23]):

(Troom1+Troom7)
AV G
30 : The average temperature

for rooms 1 and 7 over 30 minutes.

A crucial limitation of this solution is the complexity that
is necessarily involved in implementing it. In order to sup-
port the temporal operators, a complex timestamping scheme
is required; similarly, the spatial restriction operator re-
quires every sensor node to have accurate positioning in-
formation, which is not realistic for many sensor networks.
Yoneki and Bacon report that they are working on a com-
plete implementation, but had no implementation results to
report yet in [23]. Further, the solution makes an assump-
tion that all information reported by sensors is accurate, and
that all sensors that are of the same type are interchange-
able from the application’s perspective (i.e., they all provide
adequate levels of quality and identical data formats). Spec-
ification of the required sensor data types uses only a very
simple naming scheme (for example, “T” to represent tem-
perature in the above example).

Some work on handling uncertainty of events in sensor
networks has been done by Li et al. [15] in their work on
DSWare (Data Service Middleware). They introduce the no-
tion of confidence when looking at event correlations. For a
compound event made up of several sub-events, they propose
using a confidence function to determine the likelihood of the
compound event, according to how many of the sub-events
have occurred. Li et al. also discuss reducing the confidence
of events based on age to address staleness. However, they
provide little detail about the scheme beyond examples, and
it is unclear whether it has been implemented.

In contrast, the Mires middleware [22] is a more pragmatic
publish/subscribe solution that has been designed and im-
plemented to run on TinyOS. TinyOS provides built-in sup-
port for event handling and a message-oriented communica-
tion paradigm (Active Messages), both of which, Souto et
al. argue, provide a strong basis for implementing a pub-
lish/subscribe middleware. Mires provides an architecture
that allows: sensor nodes to advertise the types of sensor
data they can provide; client applications to select from the
advertised services; and sensor nodes to publish their data to
clients in accordance with their subscriptions. Mires differs
from the work discussed above in that it focuses on archi-
tectural and networking issues, rather than on subscription
semantics. No information is provided by Souto et al. on
the expressiveness of the Mires subscription language, so it
is probable that it is either very simple or similar to the
subscription languages of publish/subscribe systems used in
traditional distributed computing applications.

2.4 Service Discovery Based Approaches
The MiLAN middleware [8] takes a different approach to

the previously discussed solutions in that it builds on ex-
isting networking and service discovery protocols, using a
plug-in mechanism to incorporate arbitrary protocols. Ap-
plications specify their sensing requirements to the middle-
ware through a standard API, in terms of graphs describing
sensor quality of service (QoS) and state-based variable re-
quirements. Variables are the means used by applications
to describe the types of sensor data they require. The use
of a state-based variable graph means that applications can
specify which subset of the variables is required in each ap-
plication state (and with what QoS). The middleware uses
the graphs provided by the application, together with infor-
mation about the current application state, to decide how to
configure the network and sensors to meet the application’s
requirements. Matching of sensors to variables is based on
the use of a service discovery protocol to identify which sen-
sors are available at any point in time. This approach ad-
dresses failure and evolution in the sensor network. Central
considerations in sensor matching are cost (in terms of power
and other resources) and QoS. Variables can be bound to vir-
tual sensors that combine data from two or more sensors to
provide data with better quality than a single sensor alone.

One shortcoming is that MiLAN relies on existing ser-
vice discovery protocols, most of which are not suitable for
use in resource-poor sensor networks. This includes the two
service discovery protocols mentioned by Heinzelman et al.,
SDP and SLP. MiLAN appears to target a different class of
sensor network (i.e., one that is richer in resources and closer
to traditional heterogeneous distributed systems) than the
previously described solutions.

MiLAN does not appear to have been implemented1.

3. ANALYSIS AND FUTURE DIRECTIONS
Sensor networks clearly have the potential to revolutionise

a number of industries: medicine, field biology, agriculture
and defence among others. They may even change the way
humans interact with the objects around them. However,
before these goals can be achieved, there are many challenges

1Heinzelman et al. stated in a 2004 publication [8] that
the middleware was then under development; more recent
results do not appear to be publicly available.

that must be overcome. This section gives an overview of
what the authors believe are the most important challenges
in the area of middleware for sensor networks, and suggests
the directions in which research in this area should proceed.
Specifically, the authors argue for a convergence of middle-
ware approaches in sensor networks and context-aware sys-
tems as a means to bridge the gap between the sophisticated
high-level programming and query abstractions expected by
context-aware applications and the simpler abstractions pro-
vided by present-day middleware for sensor networks.

A key assumption of most of the middleware solutions dis-
cussed in Section 2 is that the nodes in a sensor network are
resource constrained and homogeneous. This assumption is
too restrictive in light of sensor network-based applications
envisioned for the future. There is often a great disparity in
the processing and communication capabilities of the sensor
nodes required for these applications. New middleware solu-
tions for sensor networks must be more generic and assume
heterogeneous sensor hardware and diverse communication
mechanisms. Already, platforms that make use of a wide
range of sensors, from cameras to temperature sensors, are
appearing in the field of context-aware systems [3].

In general, middleware for context-aware systems sup-
ports more sophisticated queries and data fusion techniques
than sensor network middleware. With improving facial
recognition techniques, for example, context-aware systems
can answer queries such as “who is in the current frame?”
Increasingly, they also support advanced reasoning with the
aid of ontologies. Such reasoning allows new information to
be abstracted from explicitly gathered information. For ex-
ample, given an appropriate set of rules or machine learning
algorithms, it is possible to derive, with some degree of ac-
curacy, a person’s current activity from the current time and
his/her location. Middleware solutions for sensor networks,
on the other hand, typically provide simpler kinds of queries
and trivial data aggregation (min, max, sum, average, etc.).

Related to the use of ontologies in middleware solutions
for context-aware systems is their alignment with standards.
Ontology-based approaches to context-awareness build upon
W3C standards such as XML, RDF and OWL, providing
a platform for interoperability and a formal semantics for
reasoning. In contrast, most middleware solutions for sen-
sor networks currently are not aligned with any standards.
However, the Sensor Web Enablement initiative within the
Open Geospatial Consortium (OGC) is developing XML-
based standards that may be used to help bridge the gap
between context-aware systems and sensor networks. These
standards include the Sensor Model Language (SensorML)
and Observations & Measurements (O&M)2.

There may be benefits in attempting to layer the con-
text reasoning capabilities [17, 6] and programming abstrac-
tions/toolkits [10] of context-aware systems over the top of
middleware for sensor networks. Many middleware solutions
for context-aware systems currently require custom software
components to be written in order to interface with each new
sensor type (called widgets in the Context Toolkit [5] and
receptors in the middleware of Henricksen et al. [10]). They
also do not provide query routing/processing solutions suit-
able for extracting data from highly resource-constrained
sensor nodes. Thus, layering the solutions would not only
confer advantages from the research on context-aware sys-

2http://www.opengeospatial.org/pt/06-046r2

tems to middleware for sensor networks; it would also trans-
fer benefits in the other direction.

There are several challenges involved in harmonising mid-
dleware for sensor networks with middleware for context-
aware systems. One of the crucial challenges which has al-
ready been alluded to lies in harmonising the information
modelling and query abstractions. Context-aware systems
involve high-level information models [10], which, as men-
tioned, are often aligned with standards such as OWL or
RDF. Querying in these systems involves extracting infor-
mation from these models and/or carrying out reasoning on
the information. In contrast, current sensor network mid-
dleware solutions support simpler query mechanisms, such
as SQL-like queries. One route towards harmonisation is to
incorporate mark-up of sensor data and/or query results us-
ing XML formats such as O&M. However, semantic match-
ing would still be required between high-level concepts and
sensor data (e.g., between concepts such as activity and sen-
sor observations such as movement or pressure). Indulska et
al. [12] have carried out some preliminary work in this area,
but further research is required.

To better support reasoning about, and use of, sensor
data, improved support for information quality in sensor
network middleware is required. Solutions for modelling
and reasoning about information in context-aware systems
assume the existence of quality metadata that characterises
sensor-derived information with respect to relevant parame-
ters such as certainty and freshness [10]. Harmonising mid-
dleware for sensor networks with middleware for context-
aware systems therefore implies incorporating the notion of
quality within the former (in the query model, in particular).

Work also needs to be done on supporting more advanced
types of data aggregation and fusion within sensor networks.
For most purposes, it will not be sufficient to adopt a solu-
tion in which data from a sensor network is aggregated in a
repository located on a single sink node at which higher-level
interpretation and reasoning are carried out. Data fusion,
interpretation and reasoning will be required at multiple lo-
cations in the network. Query sophistication, rather than
resource constraints, will become the key design considera-
tion for sensor networks as the hardware capacity of sensor
nodes increases. In future, to aid in comparing the sophis-
tication of query support in various middleware solutions,
it will be useful to develop query benchmarks for evaluating
the solutions (similar to performance benchmarks already in
use). These could consist of representative queries from a
variety of application domains.

4. CONCLUSIONS
This paper has presented an overview of the current state-

of-the-art in middleware for sensor networks, covering database-
inspired, tuple space, event-based and service discovery based
approaches. These solutions have several shortcomings. They
offer relatively simple query abstractions, and most provide
only primitive data fusion mechanisms within the network.
They also largely ignore issues related to uncertainty and in-
formation quality. Finally, most solutions assume that sen-
sor nodes are homogeneous and resource constrained, some
solutions make strict assumptions about network topology,
and several of the more sophisticated proposals, such as
SINA and MiLAN, do not appear to have been implemented.

A significant body of related research has already been
carried out in the area of context-aware systems in relation

to modelling and reasoning about sensor-derived data, mod-
elling of information quality, and detecting and resolving
conflicting information. Work has also been done on devel-
oping appropriate high-level programming abstractions and
toolkits to simplify the design and implementation of appli-
cations that rely on the sensor data. One of the contribu-
tions of this paper has been a discussion of how the work
on middleware for sensor networks can be combined with
research on context-aware systems, in order to leverage the
relative strengths of the work in the two areas.

5. ACKNOWLEDGEMENTS
National ICT Australia is funded by the Australian Gov-

ernment’s Department of Communications, Information Tech-
nology, and the Arts; the Australian Research Council through
Backing Australia’s Ability and the ICT Research Centre of
Excellence programs; and the Queensland Government.

6. REFERENCES
[1] P. Bonnet, J. E. Gehrke, and P. Seshadri. Towards

sensor database systems. In 2nd International
Conference on Mobile Data Management (MDM),
volume 1987 of Lecture Notes in Computer Science,
pages 3–14. Springer, 2001.

[2] A. Boulis, C.-C. Han, and M. B. Srivastava. Design
and implementation of a framework for efficient and
programmable sensor networks. In International
Conference on Mobile Systems, Applications and
Services (MobiSys), pages 187–200. ACM Press, 2003.

[3] G. Chen and D. Kotz. Solar: An open platform for
context-aware mobile applications. In 1st
International Conference on Pervasive Computing
(Pervasive), Short Paper Proceedings, pages 41–47,
Zurich, August 2002.

[4] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L.
Murphy, and G. P. Picco. TinyLIME: Bridging mobile
and sensor networks through middleware. In 3rd IEEE
International Conference on Pervasive Computing and
Communications (PerCom), pages 61–72. IEEE
Computer Society, March 2005.

[5] A. K. Dey, D. Salber, and G. D. Abowd. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications.
Human-Computer Interaction, 16(2-4):97–166, 2001.

[6] F. L. Gandon and N. M. Sadeh. Semantic web
technologies to reconcile privacy and context
awareness. Web Semantics Journal, 1(3), 2004.

[7] D. Gelernter. Generative communication in Linda.
ACM Computing Surveys, 7(1):80–112, January 1985.

[8] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and
M. A. Perillo. Middleware to support sensor network
applications. IEEE Network, 18(1):6–14, 2004.

[9] K. Henricksen and J. Indulska. A software engineering
framework for context-aware pervasive computing. In
2nd IEEE International Conference on Pervasive
Computing and Communications (PerCom), pages
77–86. IEEE Computer Society, March 2004.

[10] K. Henricksen and J. Indulska. Developing
context-aware pervasive computing applications:
Models and approach. Journal of Pervasive and
Mobile Computing, 2(1):37–64, Feburary 2006.

[11] K. Henricksen, J. Indulska, T. McFadden, and
S. Balasubramaniam. Middleware for distributed
context-aware systems. In International Symposium
on Distributed Objects and Applications (DOA),
volume 3760 of Lecture Notes in Computer Science,
pages 846–863. Springer, 2005.

[12] J. Indulska, K. Henricksen, and P. Hu. Towards a
standards-based autonomic context management
system. In 3rd International Conference on Autonomic
and Trusted Computing (ATC), volume 4158 of
Lecture Notes in Computer Science. Springer, 2006.

[13] J. Indulska, R. Robinson, A. Rakotonirainy, and
K. Henricksen. Experiences in using CC/PP in
context-aware systems. In 4th International
Conference on Mobile Data Management (MDM),
volume 2574 of Lecture Notes in Computer Science,
pages 247–261. Springer, January 2003.

[14] P. Levis and D. Culler. Maté: A tiny virtual machine
for sensor networks. In 10th International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-X), October 2002.

[15] S. Li, Y. Lin, S. H. Son, J. A. Stankovic, and Y. Wei.
Event detection services using data service middleware
in distributed sensor networks. Telecommunication
Systems, 26(2-4):351–368, June 2004.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TinyDB: An acquisitional query processing
system for sensor networks. ACM Transactions on
Database Systems, 30(1):122–173, 2005.

[17] A. Ranganathan and R. H. Campbell. An
infrastructure for context-awareness based on
first-order logic. Personal and Ubiquitous Computing,
7(6):353–364, December 2003.

[18] K. Römer, O. Kasten, and F. Mattern. Middleware
challenges for wireless sensor networks. ACM Mobile
Computing and Communications Review (MC2R),
6(4):59–61, October 2002.

[19] J. Russo, A. Sukojo, A. S. Helal, R. Davenport, and
W. C. Mann. SmartWave - intelligent meal
preparation system to help older people live
independently. In 2nd International Conference on
Smart Homes and Health Telematics (ICOST),
volume 14 of Assistive Technology Research Series,
pages 122–135. IOS Press, September 2004.

[20] A. Schmidt. Implicit human computer interaction
through context. Personal Technologies,
4(2&3):191–199, June 2000.

[21] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo.
Sensor information networking architecture and
applications. IEEE Personal Communications,
8(4):52–59, August 2001.

[22] E. Souto, G. Guimãraes, G. Vasconcelos, M. Vieira,
N. Rosa, C. Ferraz, and J. Kelner. Mires: a
publish/subscribe middleware for sensor networks.
Personal and Ubiquitous Computing, 10(1):37–44,
February 2006.

[23] E. Yoneki and J. Bacon. Unified semantics for event
correlation over time and space in hybrid network
environments. In IFIP International Conference on
Cooperative Information Systems (CoopIS), volume
3760 of Lecture Notes in Computer Science, pages
366–384. Springer, 2005.

