
Modelling Context Information with ORM⋆

Karen Henricksen1, Jadwiga Indulska2, and Ted McFadden1

1 CRC for Enterprise Distributed Systems Technology (DSTC)
karen@itee.uq.edu.au, mcfadden@dstc.edu.au

2 School of Information Technology and Electrical Engineering,
The University of Queensland

jaga@itee.uq.edu.au

Abstract. Context-aware applications rely on implicit forms of input,
such as sensor-derived data, in order to reduce the need for explicit input
from users. They are especially relevant for mobile and pervasive comput-
ing environments, in which user attention is at a premium. To support
the development of context-aware applications, techniques for modelling
context information are required. These must address a unique combina-
tion of requirements, including the ability to model information supplied
by both sensors and people, to represent imperfect information, and to
capture context histories. As the field of context-aware computing is rel-
atively new, mature solutions for context modelling do not exist, and
researchers rely on information modelling solutions developed for other
purposes. In our research, we have been using a variant of Object-Role
Modeling (ORM) to model context. In this paper, we reflect on our ex-
periences and outline some research challenges in this area.

1 Introduction to Context Modelling

Context-awareness has recently emerged as a popular approach for building ap-
plications for mobile and pervasive computing environments that are capable of
automatically adapting to their environments and reducing the need for explicit
directions from the user. Context-aware applications monitor and respond to
information about the context of use, such as the available computing resources
and the current location and activity of the user. Context-aware applications
typically obtain this information - which is termed context information - from
varied sources, including people, sensors (e.g., GPS receivers, tilt sensors and
accelerometers), network monitors, and other context-aware applications. Com-
mon examples of context-aware applications include tourist guides that present
information that is tailored according to the user’s location and preferences, and
mobile phones that adapt their ringing behaviour depending on where the user
currently is, who they are with, and what they are likely to be doing. A variety

⋆ The work reported in this paper has been funded in part by the Co-operative Re-
search Centre for Enterprise Distributed Systems Technology (DSTC) through the
Australian Federal Government’s CRC Programme (Department of Education, Sci-
ence, and Training).

of emerging ‘intelligent environments’ - such as homes, hospitals and meeting
rooms that are able to sense the activities of their occupants and leverage this
information to automatically derive those occupants’ requirements - can also be
considered context-aware.

Early context-aware applications, which typically relied on only one or two
simple types of sensed context information, were generally constructed by writ-
ing software modules to directly query sensors and carry out simple types of
interpretation of the sensor outputs. In these applications, the model of context
information - or, more specifically, the kinds of context used, and their repre-

sentations or formats - were fixed and closely intertwined with the application
logic. Today, the shortcomings of this approach are widely acknowledged. In-
creasingly, developers of context-aware applications are seeking techniques for
modelling context information in a uniform way, in order to:

– promote sharing of context information and context-sensing infrastructure
between applications;

– facilitate complex queries over multiple types of context information;
– decouple the details of the model from the application logic, thereby simpli-

fying the process of evolving the model; and
– provide a common framework for representing both sensor-derived data and

information from other sources, both of which are important for context-
aware applications.

As yet, there are no well-established techniques for modelling context, as
Strang and Linnhoff-Popien [1] demonstrated in their recent survey. Most re-
searchers have adopted modelling approaches from other fields, such as database
modelling (ORM, ER) and the Semantic Web (CC/PP, DAML+OIL, OWL). A
major advantage of these approaches is that most are widely understood and
supported by common tools and query languages. On the other hand, there is
often a considerable degree of mismatch between the capabilities of these mod-
elling approaches and the characteristics of the context information that needs
to be modelled, which necessitates extensions or work-arounds. It is this prob-
lem that we address in this paper, drawing on our experiences with using an
ORM-based context modelling approach to develop a variety of context-aware
applications. We highlight some requirements for modelling context that are not
met by ORM (or other similar modelling approaches) and present a set of novel
extensions that we have developed to address some of these requirements. We
also show how our extended variant of ORM is used to support the development
of context-aware applications, and outline some of the remaining challenges in
the area of context modelling. We assume that the reader already has a basic
familiarity with ORM; for a comprehensive treatment, we refer the reader to the
excellent book by Halpin [2].

2 Requirements for Modelling Context Information

The traditional use of ORM is the modelling of business domains, in order to
support the development of databases that are principally populated and used by

humans. Our goals in modelling context information are quite different. Context
models are mapped to information repositories that are populated by many
different entities, including humans, hardware and software sensors and context-
aware applications. Context repositories are primarily queried by context-aware
applications, which use the information to determine the current situation and
requirements of their users. These differences in information production and
consumption mean that ORM does not provide the most natural solution for
modelling context. In this section, we highlight a set of specific context modelling
problems which ORM either does not address well or at all.

2.1 Distinguishing Information from Different Sources

In order to manage and use context information effectively, it is necessary to dis-
tinguish between sensed, human-supplied and application-supplied information.
Sensed context information is generally updated frequently but can be inac-
curate due to problems like noise, calibration/configuration errors, and so on.
In comparison, user-supplied information is updated infrequently. It is typically
accurate initially, but becomes less reliable over time. Application-supplied in-
formation has characteristics that fall between those of sensed and user-supplied
information. We require techniques for associating fact types with information
sources, and, in some cases, annotating individual facts with specific metadata
about their sources (e.g., sensor or user IDs).

2.2 Allowing Inconsistency and Incompleteness

Conflicting information is a common problem in context-aware systems; differ-
ent sensors, for example, may report different values, and it may not be possible
to determine which value is the correct one. Likewise, incomplete information
is the norm rather than the exception. ORM uses a variety of constraints, such
as uniqueness constraints and mandatory role constraints, to prevent such prob-
lems from arising; these are mapped to database constraints, so that updates
that violate the constraints are rejected at run-time. This is acceptable when
information is inserted by humans who can investigate the cause of the conflicts
and resolve them. However, it is not appropriate for context-aware systems.
Instead, inconsistencies and incompleteness should be allowed in a controlled
fashion, and appropriately handled by context-aware applications. This requires
separate modelling constructs to capture true domain constraints, which match
the real world semantics, and the looser integrity constraints that should be
enforced by context repositories.

2.3 Modelling Temporal Data and Constraints

Context-aware applications are frequently not only interested solely in the cur-
rent context, but also in future or past states, or changes in state over time.
Therefore, it is often desirable to model histories of certain types of context

information. Although histories can be modelled in ORM by explicitly includ-
ing time as an additional role in fact types, this solution is clumsy; it is more
natural to provide dedicated modelling constructs for temporal fact types, in-
cluding special temporal constraint types. A considerable amount of work has
been done in the area of modelling temporal data, and some solutions do exist
for extending ORM with temporal concepts [3]; however, these are not yet part
of the standard ORM notation.

2.4 Modelling Information Quality

As discussed in Sections 2.1 and 2.2, context information is often imperfect, and
context-aware applications must be capable of operating under this assumption.
To allow applications to make informed decisions about which context infor-
mation should be trusted and which should not, quality metadata is required.
Appropriate types of metadata vary between fact types; for example, a fact de-
scribing a person’s current activity might be associated with a timestamp, while
a fact describing a person’s current location coordinates might also be annotated
with the standard error associated with the sensor supplying the information.
Although quality could be modelled simply by including additional roles in fact
types, this solution becomes undesirable when it comes to reasoning about con-
text information, as quality values cannot be distinguished from ordinary values
in facts.

2.5 Modelling Information Ownership

A final requirement is imposed by privacy requirements in context-aware sys-
tems. In business domains, an information repository generally falls under the
control of a single business entity, which can set global access control policies
for users of the repository; unfortunately, this is not the case for context repos-
itories, which may combine sensitive information belonging to many users [4].
This necessitates a more complex model of ownership and control. One way to
address this requirement is to extend the context model with statements that ex-
plicitly distribute the ownership of individual information types (i.e., fact types)
amongst a set of people and/or other entities.

3 The Context Modelling Language

Although solutions exist for some of the problems discussed in the previous
section (for example, for modelling temporal data [5] and information quality
[6]), there is no single modelling approach that addresses all of the problems in
a cohesive way. In this section, we outline a set of extensions to ORM that we
developed to address most of the problems. For want of a better name, we refer
to this ORM variant as the Context Modelling Language (CML).

3.1 Source Annotations

Our first extension allows fact types to be characterised in terms of the persis-
tence and source of the information that they capture. The motivation for this
extension was provided in Section 2.1. First, we differentiate between static and
dynamic fact types. Static fact types represent invariant properties of a context-
aware system. Static facts are very simple to manage; they are usually stored
indefinitely in context repositories for querying by context-aware applications.

Dynamic fact types are classified according to source. Sensed fact types rep-
resent information supplied by hardware or software sensors, while profiled fact
types represent information supplied by users or context-aware applications. The
former are generally frequently updated, while the latter are not; therefore, they
suit different styles of management within context repositories. Sensed infor-
mation that is only infrequently queried may not be kept up to date within
context repositories (so as to conserve resources), but instead loaded on demand
by querying the appropriate sensors.

The annotations we use to represent static, profiled and sensed fact types are
illustrated in Fig. 1 (a)-(c). Note that these annotations are never attached to
ORM’s derived fact types.

3.2 Alternative Fact Types

In order to deal with conflicts of the kind that we described in Section 2.2, in
which sensors report different values for some type of context, we introduce the
notion of alternatives. Alternatives are mutually exclusive facts (of the same fact
type) that have been reported about some entity or entities. Example alternatives
are “Michelle is located in Sydney” and “Michelle is located in New York”.

To selectively allow alternatives, we introduce an alternative fact type. This
is annotated with an ‘a’ symbol and a special alternative uniqueness constraint,
as shown in Fig. 1 (d). The uniqueness constraint always spans n-1 roles, where
n is the arity of the fact type. The role not spanned by the constraint is known
as the alternative role. Alternative uniqueness constraints are distinguished from
ordinary uniqueness constraints to indicate their distinct semantics. An alter-
native uniqueness constraint is a domain constraint that is not strictly enforced
by context repositories; instead the constraint is effectively extended over the
alternative role to allow alternative values for this role. Alternative facts have
different semantics to ordinary facts, which needs to be taken into account when
querying context repositories. We discuss this issue briefly in Section 3.6.

3.3 Temporal Fact Types

To accommodate histories of context information, we extended ORM with a
temporal fact type. This extension uses an entirely different notation to the
recent TORM proposal [3], as it pre-dates TORM. The notation is shown in Fig.
1 (e). A fact type is marked as a temporal fact type using the ‘[]’ annotation,

Device
(id)

Device Type
(name)

is of type

Person
(name)

(a)

(b)

Device
(id)

is permitted
to use

s

(c)

Person
(name)

Location
(name)

is located at

(d)

Person
(name)

Location
(name)

is located at

(e)

Person
(name)

Activity
(name)

is engaged in

[]
(f)

Person
(name)

Location
(name)

is located at

a

a

Freshness Accuracy

Production
Time (tstamp)

Standard
Error (nr)+

Time to Live
(duration)+

Fig. 1. CML’s context modelling extensions. (a), (b) and (c) show static, profiled and
sensed fact types, respectively. (d) provides an example of an alternative fact type; this
allows multiple location readings to be associated with each person. (e) illustrates a
temporal fact type used to capture histories of user activities. (f) shows an alternative
fact type with quality annotations.

which has the effect of associating all facts with a valid time [7], expressed as an
interval having a start time and an end time.

Uniqueness constraints on temporal fact types can be either snapshot or life-

time constraints, in the terminology of [8]. A single fact type may have both
types of uniqueness constraint. CML adopts the convention that all constraints
on temporal fact types are, by default, lifetime constraints. This preserves the
normal semantics of the constraints when the timestamps that are implicit in
temporal fact types are regarded as objects participating in ordinary roles. Snap-
shot uniqueness constraints are drawn using the special notation shown in Fig.

1 (e). These express constraints that apply at any given point in time, but not
globally over fact histories. For example, the constraint in Fig. 1 (e) indicates
that a person has at most one activity at any time (but can have many activities
within a history). An external variant is also supported, in which double, rather
than single, lines are used to connect the encircled u to the participating roles.

Care must be taken when combining temporal fact types with other kinds
of fact types. In general, derived temporal fact types are nonsensical unless at
least one of the base fact types involved in the derivation is also temporal. There
are also some complications associated with combining temporal and alternative
fact types, which are outside our scope here, but are documented in [9].

3.4 Quality Annotations

To support decision making about imperfect context information by context-
aware applications, CML provides constructs for annotating fact types with
quality annotations that effectively allow quality metadata to be attached to in-
dividual facts. CML’s quality constructs are partially inspired by work of Wang
et al. [6, 10] that addressed quality modelling in relation to ER. As illustrated in
Fig. 1 (f), each fact type can be annotated with zero or more quality parameters
(here, freshness and accuracy). These parameters are associated with one or
more metrics (production time, time to live and standard error), which indicate
how the quality is measured/recorded for each fact.

An alternative modelling approach, which does not require special constructs,
would be to objectify the fact type to which the quality annotations are attached
and add one new binary fact type for each quality metric, in which the objectified
fact type plays one role and the metric plays the other. However, our notation
is more natural and compact, and can have its own specialised mapping when
creating context repositories from CML models.

3.5 Ownership Statements

Finally, to support privacy, we have created a textual notation for specifying
the ownership of facts. Ownership statements are specified as part of a context

schema, which is a textual form of a CML model that we created as a convenient
form of input for tools that perform manipulations and mappings on context
models. We will discuss these tools in Section 4.

To keep the task of specifying ownership manageable even for large numbers
of fact types, we primarily associate ownership with objects rather than facts,
and then assign a default ownership to each fact by forming the union of the
ownerships of the objects participating in the fact. This default ownership can
also be explicitly overridden by providing ownership statements for fact types.
A full discussion of the ownership scheme can be found in an earlier paper [4].

3.6 Relational Mapping, Querying and Interpretation

One of the attractions of ORM is its mapping to the relational model, and we
have extended this mapping to incorporate our context modelling constructs. It

is not possible, owing to space constraints, to describe the details of the mapping
procedure in this paper; however [9] provides a full discussion. In Section 4, we
will briefly describe a tool that we have developed to automate the procedure.

While there are no representational problems associated with mapping our
extended ORM to the relational model, there are problems of interpretation. As
mentioned in Section 3.2, an alternative fact does not have the same semantics
as an ordinary fact. To overcome this problem, we provide our own query layer
for context repositories that maps portions of context queries to standard rela-
tional database queries expressed in SQL. The query layer provides evaluation
of context information using a three-valued logic which is able to accommo-
date alternative facts. We plan to extend the query mechanism to provide more
sophisticated treatment of quality annotations, unknowns and temporal facts.

4 Tool Support for Developing Context-Aware Systems

We have developed a set of tools and infrastructural components to support
software engineers in the task of constructing and deploying context-aware ap-
plications that use CML models. These include a context management layer that
augments a relational database with additional functionality required for stor-
ing and querying CML models, and a schema compiler toolset that supports a
variety of transformations on CML models. The schema compiler tools accept a
context model description in the context schema notation we discussed in Sec-
tion 3.5, perform checks to verify the integrity of the model, and then produce
one or more of the following outputs:

– SQL scripts to load and remove context model definitions from relational
databases;

– model-specific helper classes, for Java and Python, that can be used by
application developers to simplify source code concerned with context queries
and updates; and

– context model interface definitions that can be compiled to stubs that can
be used by applications to easily transmit or receive context information
without dealing with any of the protocols used for remote communication.

The tools and infrastructure are documented further in [11] and [12].

5 Open Research Problems

Context modelling has recently become a hot topic in the field of pervasive com-
puting, and numerous modelling approaches have appeared since we first began
working on CML in 2002. However, many open research problems remain. In
particular, more work is needed in relation to modelling, querying and reason-
ing over imperfect context information, in order to adequately address problems
such as sensing errors and sensor failures. Although solutions exist in other fields
for dealing with imperfect information, it is likely that no solution will provide
a perfect match with the requirements of context-aware systems.

Further work is also needed to develop sophisticated context management
systems, which must be radically different to the average relational database
system. One important issue is traceability - that is, being able to track context
information from its source, through various forms of processing (e.g., sensor fu-
sion), to the repositories in which the information eventually resides. This kind
of tracking is needed to link incorrect context information to failed or misconfig-
ured components, thereby enabling debugging and repair. Context management
systems must also address issues of scalability, performance and distribution in
order to satisfy the requirements of pervasive systems, which may involve very
large number of mobile sensors, applications and users. So far, only small pro-
totypes have been developed which have not needed to address these problems.

Finally, work is needed on how to provide interoperability between multiple
context-aware systems that each possess their own context models, and possibly
also their own context modelling approaches. Some early work has already begun
in this area using ontology standards such as DAML+OIL and OWL [13, 14].

6 Concluding Remarks

In this paper, we introduced CML, an ORM-based approach for modelling the
context information required by context-aware applications. To date, we have
used CML to produce context models for several context-aware communication
applications [15, 16], a vertical handover application [11], and applications to
support independent living of elderly people living in ‘smart homes’ [17]. With
the exception of the independent living applications, all of these applications
have been fully implemented. In conjunction with these efforts, we have built a
suite of tools to support software engineers in building and deploying applications
that use CML models, leveraging the mapping to the relational model.

Although numerous research challenges remain in relation to context mod-
elling, we believe that CML is one of the most viable of the currently available
solutions, and is well positioned to serve as a platform for investigating new
modelling constructs that will begin to address these challenges. We have found
ORM’s fact types to provide a natural basis for extension and annotation with
metadata and constraints - more so than attribute-based modelling approaches
such as ER and UML, and ontology languages, such as OWL, which we have
also evaluated as techniques for context modelling, as discussed in [18] and [14].

References

1. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: UbiComp 1st
International Workshop on Advanced Context Modelling, Reasoning and Manage-
ment, Nottingham (2004) 34–41

2. Halpin, T.A.: Information Modeling and Relational Databases: From Conceptual
Analysis to Logical Design. Morgan Kaufman, San Francisco (2001)

3. Pornphol, P., Chittayasothorn, S.: A temporal relational and object relational
database design technique. In: SoutheastCon. (2004) 54– 59

4. Henricksen, K., Wishart, R., McFadden, T., Indulska, J.: Extending context models
for privacy in pervasive computing environments. In: 2nd International Workshop
on Context Modelling and Reasoning (CoMoRea), PerCom’05 Workshop Proceed-
ings, IEEE Computer Society (2005) 20–24

5. Gregersen, H., Jensen, C.S.: Temporal entity-relationship models - a survey. IEEE
Transactions on Knowledge and Data Engineering 11 (1999) 464–497

6. Wang, R., Reddy, M.P., Kon, H.: Towards quality data: An attribute-based ap-
proach. Decision Support Systems 13 (1995) 349–372

7. Jensen, C.S., et al.: The consensus glossary of temporal database concepts - Febru-
ary 1998 version. In: Temporal Databases: Research and Practice. Volume 1399 of
Lecture Notes in Computer Science., Springer (1998) 367–405

8. Tauzovich, B.: Towards temporal extensions to the entity-relationship. In: 10th
International Conference on the Entity-Relationship Approach (ER), San Mateo
(1991) 163–179

9. Henricksen, K.: A Framework for Context-Aware Pervasive Computing Applica-
tions. PhD thesis, School of Information Technology and Electrical Engineering,
The University of Queensland (2003)

10. Storey, V., Wang, R.: Modeling quality requirements in conceptual database design.
In: 3rd Conference on Information Quality (IQ), Cambridge (1998) 64–87

11. Henricksen, K., Indulska, J., McFadden, T., Balasubramaniam, S.: Middleware
for distributed context-aware systems. International Symposium on Distributed
Objects and Applications (DOA) (to appear) (2005)

12. McFadden, T., Henricksen, K., Indulska, J.: Automating context-aware application
development. In: UbiComp 1st International Workshop on Advanced Context
Modelling, Reasoning and Management, Nottingham (2004) 90–95

13. Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL: A Context Ontology Language
to Enable Contextual Interoperability. In: 4th International Conference on Dis-
tributed Applications and Interoperable Systems (DAIS). Volume 2893 of Lecture
Notes in Computer Science., Springer (2003) 236–247

14. Henricksen, K., Livingstone, S., Indulska, J.: Towards a hybrid approach to context
modelling, reasoning and interoperation. In: UbiComp 1st International Workshop
on Advanced Context Modelling, Reasoning and Management, Nottingham (2004)
54–61

15. Henricksen, K., Indulska, J.: A software engineering framework for context-aware
pervasive computing. In: 2nd IEEE International Conference on Pervasive Com-
puting and Communications (PerCom), IEEE Computer Society (2004) 77–86

16. McFadden, T., Henricksen, K., Indulska, J., Mascaro, P.: Applying a disciplined
approach to the development of a context-aware communication application. In:
3rd IEEE International Conference on Pervasive Computing and Communications
(PerCom), IEEE Computer Society (2005) 300–306

17. Indulska, J., Henricksen, K., McFadden, T., Mascaro, P.: Towards a common con-
text model for virtual community applications. In: 2nd International Conference on
Smart Homes and Health Telematics (ICOST). Volume 14 of Assistive Technology
Research Series., IOS Press (2004) 154–161

18. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in
pervasive computing systems. In: 1st International Conference on Pervasive Com-
puting (Pervasive). Volume 2414 of Lecture Notes in Computer Science., Springer
(2002) 167–180

