
Developing Context-Aware Pervasive

Computing Applications: Models and

Approach

Karen Henricksen

CRC for Enterprise Distributed Systems Technology (DSTC), Level 7, General
Purpose South, The University of Queensland, QLD 4072 Australia

Jadwiga Indulska

School of Information Technology and Electrical Engineering, The University of
Queensland, QLD 4072 Australia

Abstract

There is growing interest in the use of context-awareness as a technique for devel-
oping pervasive computing applications that are flexible, adaptable, and capable
of acting autonomously on behalf of users. However, context-awareness introduces
a variety of software engineering challenges. In this paper, we address these chal-
lenges by proposing a set of conceptual models designed to support the software
engineering process, including context modelling techniques, a preference model for
representing context-dependent requirements, and two programming models. We
also present a software infrastructure and software engineering process that can be
used in conjunction with our models. Finally, we discuss a case study that demon-
strates the strengths of our models and software engineering approach with respect
to a set of software quality metrics.

Key words: context-aware applications, software engineering, pervasive computing
infrastructure, context modelling

⋆ The work reported in this paper has been funded in part by the Co-operative
Research Centre for Enterprise Distributed Systems Technology (DSTC) through
the Australian Federal Government’s CRC Programme (Department of Education,
Science, and Training).

Email addresses: karen@itee.uq.edu.au (Karen Henricksen),
jaga@itee.uq.edu.au (Jadwiga Indulska).

Preprint submitted to Elsevier Science 20 July 2005

1 Motivation

It is well known that pervasive computing introduces a set of design challenges
that are not present in traditional desktop computing. In particular, it requires
applications that are capable of operating in highly dynamic environments and
placing minimal demands on user attention. Context-aware applications aim
to meet these requirements by adapting to selected aspects of the context of
use, such as the current location, time and user activities.

In recent years, a variety of prototypical context-aware applications have ap-
peared, such as context-aware guides that present tourists with information
tailored to their location [1], and capture tools that augment various types
of media with contextual metadata describing the context in which it was
recorded [2]. Further, efforts are ongoing to construct context-aware environ-
ments that are instrumented with sensors that enable tracking of the occupants
and their activities. These environments vary in scale from single rooms, such
as classrooms and meeting spaces [3,4], to smart homes that support indepen-
dent living of the elderly or disabled [5].

Despite the recent flurry of interest, context-aware applications have not yet
made the transition out of the laboratory and into everyday use. This is largely
a result of high application development overheads, social barriers associated
with privacy and usability, and an imperfect understanding of the truly com-
pelling uses of context-awareness. This paper presents a software engineering
approach that we have developed to address these three challenges: the first
by simplifying design and implementation tasks associated with context-aware
software, and the latter two by facilitating the types of rapid prototyping and
experimentation that are required in order to overcome these obstacles. This
approach is based around a set of novel conceptual foundations, including
context modelling techniques, a preference abstraction, and a pair of comple-
mentary programming models. These are introduced in Sections 2 to 4, while
Section 5 describes the integration of the models into a software infrastructure
for pervasive systems. Section 6 outlines the process involved in developing a
context-aware application using the models and infrastructure, and Section 7
presents a case study that demonstrates the value of our approach in terms of
software quality metrics. Finally, Section 8 provides a summary and discussion
of future work.

2 Context modelling techniques

Recent research in the field of context-awareness has predominantly adopted
an infrastructure-centred approach; that is, it has assumed that the complexity

2

of engineering context-aware applications can be substantially reduced solely
through the use of infrastructure capable of gathering, managing and dissem-
inating context information to applications that require it. In line with this
approach, a variety of solutions that acquire and interpret context information
from sensors, and manage repositories of information that support queries and
notifications, have been proposed. These include the Context Toolkit [6], the
Solar platform [7], and various context services [8,9]. While these solutions
help to simplify application development and promote reuse of functionality,
we argue that an infrastructure-centred view leads to abstractions for describ-
ing and programming with context that are not the most natural ones. In an
earlier paper [10], we observed that most of the proposed infrastructures are
based on context models that are informal and lacking in expressive power.

It has been our goal, therefore, to develop a framework that integrates a set of
well-defined context modelling and programming abstractions with the types
of infrastructural support described above. To this end, we designed the con-
ceptual foundations of our framework first, starting with context modelling
as our primary interest. As we set out with the objective of creating tools
that could support the software engineer in a variety of tasks, we developed
modelling techniques that enable incremental refinement over the software
lifecycle. In Sections 2.2 to 2.4 we present our three separate yet closely inte-
grated modelling approaches that support (i) the exploration and specification
of an application’s context requirements, (ii) the management of context in-
formation stored in a context repository, and (iii) the specification of abstract
classes of context that are close to the way the programmer and end user view
context. First, however, we briefly discuss the features of context-aware sys-
tems that differentiate the modelling and management of context information
from other types of data or knowledge representation and management.

2.1 Characteristics of context information

Context information can originate from a wide variety of sources, leading to
heterogeneity in terms of quality and persistence. While much of the previ-
ous research in context-awareness focuses only on sensed information, we have
found rich context models that integrate sensed, static, user-supplied (pro-
filed) and derived information to be the most useful. These four classes of
information each display distinctive characteristics [10]; for example, sensed
context is usually highly dynamic and prone to noise and sensing errors, while
user-supplied information is initially reliable, but easily becomes out of date.

The problem of imperfect context information is well recognised and some of its
causes have already been described. Some context modelling solutions address
part of this problem by allowing context information to be associated with

3

Person Device

engaged in

permitted to use

located near

* located at

located at

(name)

Location

a

a

[]

requires device

has mode

s Communication

Key/uniqueness constraint

Key

Snapshot uniqueness constraint
Alternative uniqueness constraint

Dependency
Quality annotation

engaged in(p1,a) dependsOn located at(p2,l)

iff p1 = p2

located near(p,d) iff located at(p, l1)

 and located at (d, l2)

 and l1 = l2

a

(identity) (id)

[]

synchronous

Mode (name)

has channel

s

Certainty

Communication

Channel (id)

Sensed fact type
Static fact type
Profiled fact type
Derived fact type
Temporal fact type
Ambiguous/alternative fact type

s

*

Probability
(nr)+

*

Activity
(name)

Fig. 1. An example CML model.

quality metadata, such as certainty and freshness estimates [9,11]. However,
this approach does not address the entire problem. For instance, it does not
provide a solution for representing or reasoning about ambiguity or unknowns.
These types of imperfection are common when sensors or other providers of
context information report conflicting values, or fail to report values at all.
Our modelling abstractions are unique in that they address all of these issues.

2.2 A graphical modelling approach

We developed a graphical context modelling approach, the Context Modelling
Language (CML), as a tool to assist designers with the task of exploring
and specifying the context requirements of a context-aware application. It
provides modelling constructs for describing types of information (in terms of
fact types), their classifications (sensed, static, profiled or derived), relevant
quality metadata, and dependencies amongst different types of information.
CML also allows fact types to be annotated to indicate whether ambiguous
information is permitted (e.g., alternative location readings), and whether
historical information is retained. Finally, it supports a variety of constraints,

4

both general (such as cardinality of relationships) and special-purpose (such
as snapshot and lifetime constraints on historical fact types).

Initially, we formulated CML independently of any established information
modelling technique. This afforded the flexibility to express the desired con-
cepts in the most flexible way. The results of this initial exploration are pre-
sented in a previous paper [10]. Subsequently, we chose to reformulate the
modelling concepts as extensions to Object-Role Modeling (ORM) [12]. ORM
was adopted because of its closeness to our original modelling approach, its
superior formality and expressiveness in comparison to solutions such as ER,
and the presence of a mapping to the relational model (allowing a straightfor-
ward representation of a context model in terms of a relational database). To
illustrate the notation used by CML, we show an example model in Figure 1.
This model is suitable for a variety of context-aware communication applica-
tions, and represents a subset of the model we developed as part of the case
study presented in Section 7. The model captures:

• user activities in the form of a temporal fact type that covers past, present
and future activities;

• associations between users and communication channels and devices; and
• locations of users and devices (both absolute and relative, where the latter

is represented as a derived fact type).

Each ellipsis in the figure depicts an object type (with the value in parentheses
describing the representation scheme used for the object type), while each
box denotes a role played by an object type within a fact type. To give an
example, the “has channel” fact type contains two roles, one played by the
Person object type and the other by the Communication Channel object type.
An example instance of this fact type is has channel[Michelle Williams, +61 7
3365 4310], where the second value in the fact is a telephone number identifying
a channel by which Michelle can be reached. All of our example fact types in
Figure 1 contain either one or two roles; however, larger numbers of roles are
also permitted.

The annotations on the fact types show that user and device locations are both
sensed and can be populated by alternative facts (i.e., each user or device can
have multiple recorded locations). Additionally, each recorded location fact
has an associated certainty measure in the form of a probability estimate. All
other types of context information - with the exception of proximity infor-
mation, which is derived from the two sensed fact types - are user-supplied
(i.e., static or profiled, depending on the persistence of the information). Fi-
nally, user activity is modelled as being partially dependent on user location.
This dependency is of interest to the infrastructural components responsible
for managing context information on behalf of context-aware applications.
For example, these components can use their knowledge of the dependency

5

to pro-actively issue queries to refresh activity facts in response to location
changes. Further information about CML can be found in some of our previous
publications [10,13–15].

2.3 Relational representation

Halpin [12] describes a procedure for mapping from ORM to the relational
model. We leverage this mapping to create a relational representation of CML
fact types that is well suited to context management tasks, such as enforcement
of constraints, storage within a database, and querying by applications. In
most cases, the mapping translates each fact type to a corresponding relation,
such that roles in the fact type are represented by columns/attributes in the
relation, and the ORM and CML constraints are expressed as database con-
straints. Special treatment is provided for alternative, temporal and quality-
annotated fact types and their respective constraints, as discussed in [14].

The relational mapping leads to a representation of context information that
consists of a set of facts expressed in the form of database tuples. In order to
support reasoning about these facts, we adopt a form of closed world assump-
tion as follows. Assume that R is the set of relations belonging to a context
model, I is an instantiation of the model (henceforth termed a context in-
stance), I(r) represents the set of tuples in I belonging to a relation r ∈ R,
and dom is the set of constant values permitted within any context instance.
Then an assertion of the form r[c1, ..., cn] (where r ∈ R and each ci ∈ dom
for 1 ≤ i ≤ n) is true for I if there is a tuple < c1, ..., cn > in I(r), and false
otherwise.

As it stands, this simple interpretation does not accommodate uncertain con-
text information. Therefore, we extend it to deal with unknowns (represented
by null values in tuples) and ambiguity (represented by alternative facts) using
a three-valued logic. An assertion r[c1, ..., cn] (where r and c1, ..., cn are con-
strained as before) evaluates to the third logical value (possibly true) when the
tuple < c1, ..., cn > is not present within I(r), but a matching tuple is present
when one or more of the constants ci is replaced with the special null value,
or when the tuple is present, but is ambiguous (that is, there are alternative
facts [15]). An assertion is false when it is neither true nor possibly true.

2.4 The situation abstraction

Our graphical modelling notation is well suited for use when specifying the
context information used by a context-aware application, and its relational
mapping is a natural choice for context storage and management, but neither

6

serves as a natural programming abstraction. Both represent context informa-
tion at a finer level of granularity than is typically required when describing
the conditions that determine application behaviour. Therefore, we developed
the situation abstraction as a way to define conditions on the context in terms
of the fact abstraction of CML. Situations can be combined, promoting reuse
and enabling complex situations to be easily formed incrementally by the pro-
grammer. Our situation abstraction is conceptually similar to that proposed
by Dey and Abowd [16] for use with their Context Toolkit, but is considerably
more expressive.

Situations are expressed using a novel form of predicate logic that balances
efficient evaluation against expressive power. They are defined as named logical
expressions of the form S(v1, ..., vn) : ϕ, where S is the name of the situation,
v1 to vn are variables, and ϕ is a logical expression in which the free variables
correspond to the set {v1, ..., vn}. The logical expression combines any number
of basic expressions using the logical connectives, and (∧), or (∨) and not (¬),
and special forms of the universal and existential quantifiers. The permitted
basic expressions are either equalities (e.g., t1 = t2), inequalities (e.g., t1 ≤ t2)
or assertions of the form r[t1, ..., tn] as described in the previous section.

As there are problems associated with evaluating unconstrained quantified
expressions (in terms of efficiency and unsafe expressions [15]), we employ the
following restricted forms of quantification:

• ∀x1, ..., xi • r[t1, ..., tn] • ϕ

• ∃x1, ..., xi • r[t1, ..., tn] • ϕ

Here, {x1, ..., xi} ⊆ {t1, ..., tn}, r[t1, ..., tn] is an assertion and ϕ is a logical
expression 1 . The assertion in the middle of these expressions serves to restrict
the possible values for the variables, x1, ..., xi, so that ϕ is evaluated only over
these values. Each of the terms in the assertion, t1, ..., tn, is either equal to one
of these variables or a constant value (including the special wildcard value).

The evaluation of a situation S against a binding of values for its n variables,
v1, ..., vn, and a context instance, I, occurs according to the usual semantics
of the logical operators under a three-valued logic (with the modifications
described above for the universal and existential quantifiers), and according to
the closed-world interpretation of assertions that was outlined in the previous
section. Typically, the variable bindings are supplied by the context-aware
application, and describe selected aspects of the current application state,
whereas the context instance is the set of information available through a
context management infrastructure residing outside the application (this is
the information captured by the CML model).

1 Note that the symbol “•” acts as a separator and has no special semantics here.

7

Occupied(person) :

∃t1, t2, activity • engaged in[person, activity, t1, t2]•

(t1 ≤ timenow() ∧ (timenow() ≤ t2 ∨ isnull(t2))∨

(t1 ≤ timenow() ∨ isnull(t1)) ∧ timenow() ≤ t2)∧

(activity = “in meeting” ∨ activity = “taking call”)

CanUseChannel(person, channel) :

∀device • requires device[channel, device]

• located near[person, device] ∧ permitted to use[person, device]

SynchronousMode(channel) :

∀mode • has mode[channel,mode] • synchronous[mode]

Urgent(priority) :

priority = “high”

Fig. 2. Situations for a communication application, based on the context model in
Figure 1.

Some example situations, used in the communication application described
in Section 7, are shown in Figure 2. These are specified in terms of the fact
types that were defined by the CML model in Figure 1. The Occupied situa-
tion describes the condition in which a person is engaged in an activity that
generally should not be interrupted (here defined to be “in meeting” or “tak-
ing call”), on the basis of the temporal “engaged in” fact type/relation. It
examines exactly those activity facts for which the current time (returned by
the timenow() function) overlaps with the recorded time interval (providing
special treatment for facts that have no recorded start/end time). Similarly,
CanUseChannel is satisfied for a person, p, and communication channel, c,
when all of the devices required in order to use c are located in close prox-
imity to p and p has permission to use the devices. The SynchronousMode
situation holds for a given communication channel provided that the mode of
this channel (as recorded by the “has mode” relation) is synchronous (indicated
by its appearance in the “synchronous” relation). Finally, the simple Urgent
situation is satisfied whenever the priority variable has the value “high”.

3 Preference model

Appropriate context modelling techniques are a necessary, but not sufficient,
prerequisite to managing the complexity involved in engineering context-aware
applications. In all but the most trivial applications, additional tools are also
desirable to support the decision-making process involved in mapping the con-
text to appropriate application behaviours. This process is complicated by well

8

known usability challenges associated with context-awareness, such as those
related to predictability and the trade-off between autonomy and user control
[17]. In order to address these problems, the decision-making process must
accommodate requirements that vary from person to person and over time.

However, very little research has addressed this problem. One exception is the
work of Byun and Cheverst [18], which explores the integration of user mod-
elling techniques into context-aware applications. This work involves the use
of machine learning techniques to derive user models that can be leveraged in
order to support various proactive behaviours. This work appears promising;
however, we argue that explicit means of representing user preferences are
also required. The use of an explicit representation allows users to formulate
their own preferences if desired, and also provides a tool for context-aware sys-
tems to explain choices to users by exposing the associated preference traces.
Traceability significantly improves user acceptance, as users are more toler-
ant of incorrect actions taken by context-aware applications if they are able
to understand that they have a rational basis [19]. In addition, preference
traces can help users to prevent future erroneous actions by identifying and
correcting those preferences that do not have the desired effect. An explicit
representation of preferences can also be used in conjunction with automated
learning techniques to enable evolution of preferences over time in response to
user feedback.

We surveyed a variety of preference modelling approaches, both in the area
of context-awareness and in fields such as decision theory and document re-
trieval, with the aim of identifying a preference model that could be used to
support customisable context-aware behaviour. Within context-aware systems,
preferences are sometimes regarded as a type of context and modelled accord-
ingly; this is the approach taken by CC/PP [20]. This solution is appropriate
for describing very simple requirements (such as languages that are accept-
able for presenting information to a user), but not for more sophisticated,
context-dependent preferences. We encountered a similar problem with pref-
erence models used in other fields: none offered a way to incorporate context
as a determinant in preferences. Accordingly, we developed a novel preference
model based on our situation abstraction. This was designed to be compatible
with automated preference elicitation techniques, and to support composition
of preferences (such that users can express simple, possibly conflicting require-
ments and later combine these to form comprehensive preference descriptions).

Our preference model is loosely based on prior work of Agrawal and Wimmers
[21], and supports the ranking of choices according to the context. In the case
of our communication application, the choices are communication channels
available to people who would like to interact with one another, while, in the
information retrieval domain, the choices may be documents or search terms.

9

p1= when SynchronousMode(channel)∧¬CanUseChannel(callee, channel)

rate ♮

p2= when Urgent(priority) ∧ SynchronousMode(channel)

rate 1

p3= when Urgent(priority) ∧ ¬SynchronousMode(channel)

rate 0.5

Fig. 3. Example preferences for channel selection in a context-aware communication
application.

Each preference takes the form of a named pair consisting of a scope and a
scoring expression. The scope describes the context in which the preference
applies, in terms of situations. Recall that situations may evaluate to true,
false or possibly true. A preference is considered applicable within a given
context only if the scope expression is true.

The scoring expression assigns a score to a choice, which is either a numerical
value in the range [0,1] (where increasing scores represent increasing desirabil-
ity) or one of four special values, as follows:

• ♮ represents a veto, indicating that the choice to which the score is assigned
should not be selected in the context specified in the preference scope;

• ⊼ represents obligation, which is essentially the opposite of veto;
• ⊥ represents indifference or an absence of preference; and
• ? represents an undefined score, signalling an error condition.

Figure 3 presents some example preferences that a user might supply to a
context-aware communication application to indicate how (s)he would like to
be contacted by other people (or, more precisely, which types of communica-
tion channels (s)he prefers in particular circumstances). The preference name
is shown at the left, while the scope and scoring expression are preceded by
the keywords when and rate, respectively. The first example forbids the use
of synchronous channels, such as telephone and video-conferencing channels,
when the user does not have access to all of the requisite devices. Preferences
p2 and p3 together imply that synchronous channels are the preferred choice
for urgent calls: p2 assigns these the highest possible score (1), while p3 assigns
all asynchronous channels (such as email and SMS) a score of 0.5.

Note that the preference format shown in Figure 3 is not exposed directly
to users. Instead, users typically select from standard preference sets based
on natural language descriptions, or construct and combine preferences us-
ing graphical editing tools that supply libraries of predefined situations and
scoring policies.

10

Preferences can be grouped into sets and combined according to policies, such
that a single score is produced for each choice that reflects all preferences in
the set. The policies dictate the weights attached to individual preferences
and determine how conflicting preferences are handled. One common pol-
icy involves averaging the numerical scores, but allowing vetoes, obligations
and undefined scores to override. To see how this policy works, consider the
preferences in Figure 3 and a context and set of variable bindings for which
SynchronousMode(channel) and Urgent(priority) are true, and CanUseChan-
nel(callee, channel) is false. Here, p1 evaluates to ♮ (veto), p2 evaluates to
1 and p3 evaluates to ⊥ (indifferent), as its scope expression is false in this
context. In this small example, the average of the numerical scores is simply
1, however the veto produced by p1 overrides. This implies that the channel
represented by the channel variable is unsuitable in this context.

Policies need not be static. For example, user feedback can be used to dy-
namically adapt a policy to a user’s requirements (e.g., by redistributing the
weights assigned to preferences).

The following section shows how preferences are used by context-aware ap-
plications to support decision making about which behaviours or actions are
appropriate in a given context.

4 Programming models

Suitable programming models are crucial in helping to limit the complex-
ity and effort involved in implementing context-aware applications; however,
progress in developing new models has been slow. Although context servers are
now frequently used for acquiring and managing context information, most ap-
plications do not make use of any form of support (for instance, programming
toolkits or infrastructure) for interpreting and making decisions about context.
In general, context-aware software is developed using traditional programming
methods and models, and the use of context information is embedded directly
into the source code. In some cases, the logic used to process context infor-
mation and react to context changes is isolated within special components,
as in the enactor model proposed by Newberger and Dey [22]. This approach
leads to cleaner code than an unstructured approach, but still results in ap-
plications that are difficult to maintain, as source code must be modified in
order to support additional classes of behaviour and context. Some models
have been proposed that do not suffer from this problem [23], but these are
applicable only to very narrow domains.

In the following sections we describe two general programming models that
build on our situation and preference abstractions. The branching model offers

11

Scores rate(Choice[] c, Preference p, Valuation v, Context cx);

Choice selectBest(Choice[] c, Preference p, Valuation v, Context cx);

Choice[] selectBestN(int n, Choice[] c, Preference p, Valuation v,

Context cx);

Choice[] selectAbove(Score threshold, Choice[] c, Preference p,

Valuation v, Context cx);

Choice[] selectMandatory(Choice[] c, Preference p, Valuation v,

Context cx);

Fig. 4. Selected methods of the programming toolkit’s branching API.

a novel and flexible means to insert context- and preference-dependent deci-
sion points into the flow of application logic. In contrast, the triggering model
supports an event-driven programming style. It has been widely used previ-
ously in the implementation of adaptive applications, but is reformulated here
to exploit the situation abstraction as a basis for describing context changes.

The two programming models are complementary, in that they can be used
together in a single application to address different problems. To see this, con-
sider a context-aware tourist guide. The triggering model can be used by this
application to generate requests for information in a proactive fashion (for ex-
ample, when the user moves), while the branching model can be used to select
the best information to display in the new context. However, some applica-
tions may require only one of the models, as in the case of the communication
application we discuss later in the paper.

4.1 Branching

The branching model is designed to assist in decision problems involving a
context-dependent choice amongst a set of alternatives. Arbitrary choice types
can be supported; for instance, in information retrieval, branching can be used
to select relevant information to present to the user and suitable modes of
presentation, while, in a communication domain, it can be used to identify
appropriate communication channels for interactions between users. In each
of these domains, context-dependent choices are typically implemented using
if- or case-statements. However, this approach results in a tight binding of the
context model to the application logic, making it difficult to later evolve the
context model as the sensing infrastructure and user requirements change.

To overcome this problem, we exploit the preference model described in Sec-
tion 3 in our model of branching. User preferences form the link between the
context and the chosen action(s); that is, preferences assign ratings to the
alternatives according to the context and other application parameters, and,
based on these ratings, the application selects and invokes one or more actions.

12

This solution is extremely flexible, as preference information is expressed in an
application-neutral format that (i) enables modification and fine-tuning when
required and (ii) facilitates sharing of preferences between applications.

We have implemented support for branching in the form of a Java program-
ming toolkit. A small subset of the API is shown in Figure 4. This provides a
variety of methods for evaluating and selecting one or more candidate choices
according to the context. For instance, the rate method has as its parameters:

• a set of choices;
• a Preference, which is generally a composite preference (or policy) combin-

ing a large set of requirements for one or more users;
• a Valuation, binding variables contained in the preference to constant values

according to the current application state; and
• a Context, which is a wrapper for a repository of context information.

The method uses these values to compute and return a mapping of choices
to scores, which the application can interrogate and act upon as necessary.
The next two methods perform similar evaluations, but, instead of return-
ing mappings, they select and return the single best and the best n choices,
respectively, on the basis of scores assigned by the preference. The remain-
ing methods perform selections based on other criteria: selectAbove returns
the set of choices assigned numerical scores above a specified threshold, while
selectMandatory returns the set of choices assigned the obligation (⊼) score.

An example use of the toolkit to select communication channels appropriate
to users’ contexts and preferences is illustrated later in Section 7.2.

In future versions of the branching toolkit, we intend to support not only
selection of choices, but also trace and user feedback mechanisms. The trace
mechanisms will allow users to visualise links between their preferences and
their applications’ actions, while the feedback mechanisms will be used to
support automated preference learning and evolution.

4.2 Triggering

To support an asynchronous style of programming in which actions are in-
voked in response to context changes, we also provide a trigger mechanism
which builds on the situation abstraction. Context changes are described as
changes in situation states. As there are three states (true, false and possi-
bly true), there are six distinct state transitions. Triggers can be associated
with any of these transitions, which we write as TrueToFalse(S), TrueToPos-
siblyTrue(S), and so on, where S is a situation. We also allow transitions such
as EnterFalse(S), which matches both TrueToFalse(S) and PossiblyTrueTo-

13

upon EnterFalse(Occupied(“Amy Carr”))

when true

do Notify of recent missed calls

always

Fig. 5. An example trigger.

False(S), and Changed(S), which matches any of the six state transitions on S.
Finally, we allow triggers to be attached to sequences of transitions (written
t1 → ... → tn, where t1 to tn are transitions), or sets of alternative triggers
(written t1|...|tn).

Our triggering mechanism follows the event-condition-action model, in which
each trigger includes a precondition on the invocation of the specified action
that is evaluated upon detection of the event. The precondition, like the event,
is specified in terms of situations. Our model also associates each trigger with
a lifetime, which is one of the following:

• once;

• from <start> until <end>;

• until <end>;
• n times; or

• always.

An example trigger appears in Figure 5. The event, condition and action
are prefixed by the keywords upon, when and do, respectively. The action is
described in natural language for simplicity, but usually takes the form of an
invocation of relevant source code. This trigger has the effect of notifying the
user, Amy Carr, about recent missed calls at the conclusion of any engagement,
where engagements are defined according to the Occupied situation in Figure
2. The trigger has no additional preconditions beyond the detection of the
specified event, so the condition is simply the value true.

Support for the triggering model is provided in our programming toolkit along-
side the branching functionality described in the previous section.

5 Software infrastructure

We have implemented a software infrastructure incorporating our program-
ming toolkit and support for related tasks, such as management of context
information. In this section, we present an overview of the architecture and
implementation.

14

Sensor Sensor Sensor Sensor Sensor

Interpreter Interpreter

AggregatorInterpreter

Receptor Receptor Receptor Receptor

Context gathering layer

Context manager

Model Model Model
Context

Repository

Context reception layer

Context management layer

Query Interface

Situation
Repository

Preference
Repository

Trigger
Repository

Adaptation manager

Query layer

Adaptation layer

Programming Toolkit

Application ApplicationApplication Application layer

Key:
Synchronous communication
Asynchronous communication

Fig. 6. The layered architecture of our software infrastructure.

The infrastructure is organised into loosely coupled layers as shown in Figure
6. The context gathering layer acquires context information from sensors and
then processes this information, through interpretation and data fusion (ag-
gregation), to bridge the gap between the raw sensor output and the level of
abstraction required by the context management system. This involves map-
ping sensor outputs onto appropriate context facts and ensuring an appropri-
ate frequency of updates, in order to balance resource consumption against
the quality of the context data. A content-based routing scheme [24] is used
to achieve a loose coupling between the sensing and processing components
and the reception layer. This introduces tolerance for component failures, dis-
connections and evolution of the sensing infrastructure.

The context reception layer provides a bi-directional mapping between the
context gathering and management layers. That is, it translates inputs from
the former into the fact-based representation of the latter, and routes queries
from the latter to the appropriate components of the former.

The context management layer is responsible for maintaining a set of context
models and their instantiations, expressed in terms of the relational repre-

15

sentation described in Section 2.3. Applications may define their own context
models, or share models with other similar applications. In addition to han-
dling sensed information that propagates up through the reception layer, the
context management layer supports static, derived and profiled information.
Derived information is handled internally using standard database mecha-
nisms (typically, using either virtual or materialised views, depending on the
performance requirements and frequency of queries). To support static and
profiled information, which are inserted into the context management system
by human users, the layer provides customisable user interfaces for browsing
and manipulating selected types of context information.

The query layer provides applications and other components of our software
infrastructure with a convenient interface with which to query the context
management system. It supports queries in terms of both facts and situations,
and masks distribution within the context management layer by providing
query routing services. Both simple, synchronous queries and persistent, asyn-
chronous queries are permitted. The former are used in preference evaluation
and the latter in trigger evaluation.

The adaptation layer manages common repositories of situation, preference
and trigger definitions, and evaluates these on behalf of applications using
services of the lower layers. Repositories are generally shared by groups of
applications (e.g., applications running on a single device or network, or be-
longing to a single user).

Finally, the application layer provides toolkit support for our programming
models. The branching API was described in detail in Section 4.1. The trig-
gering API supports dynamic creation, activation and deactivation of triggers.

Our current version of the infrastructure is implemented in Java, using vari-
ous pieces of open-source software. The context and adaptation managers use
the standard Java Database Connectivity (JDBC) API 2 and the PostgreSQL
RDBMS 3 for storage of fact types, situations and preferences. However, the
use of JDBC leaves open the possibility of substituting other RDBMS software
in the future (for instance, lightweight implementations suitable for operation
on resource-constrained devices). Parsing of situation, preference and trigger
definitions is performed by parsers constructed using the JavaCC parser gen-
erator 4 . This approach enables us to trivially regenerate the parsers whenever
we extend the grammars, which is invaluable for rapid prototyping purposes.

2 http://java.sun.com/products/jdbc
3 http://www.postgresql.org/
4 http://javacc.dev.java.net/

16

Requirements analysis
and specification

Analysis and modelling
of context requirements

(CML and situation abstraction)

Elicitation and specification
of sample user preferences and triggers

(Preference and trigger models)

Application design
(Branching and

triggering models)

Customisation of
context gathering

infrastructure
(CML relational mapping)

Implementation
(Programming toolkit)Instantiation of sample

sets of context, preferences
and triggers for testing Unit testing

System testing

Generation of custom user
interfaces for context and adaptation managers

Field and acceptance testing

A1

A2

A3

I1

I2

T2

T3

I3

T1

P

D

Fig. 7. The software engineering process. The tools used at each step are shown in
parentheses. A3, T2 and T3 can be followed by re-iteration through earlier steps.

6 Software engineering methodology

The models and infrastructure that we have presented are designed to sup-
port a wide variety of software engineering tasks. In this section, we outline
the process that is generally followed when building a context-aware applica-
tion using these tools. This process was abstracted from our experiences with
building several context-aware applications, some of which are described in
Section 7.

Figure 7 illustrates our generic software engineering process graphically. The
steps can be partitioned into the following tasks: analysis (A); design (D);
implementation/programming (P); infrastructure customisation (I);
and testing (T).

The design and implementation steps rely on the branching, triggering and
context query APIs to incorporate context-aware functionality, but otherwise
adopt traditional methodologies and languages. Therefore, we focus our dis-
cussion on the remaining parts of the software engineering process.

17

6.1 Analysis

The analysis task begins with the general goal of documenting the function-
ality and requirements of the application (step A1), as in most other software
lifecycle models. Following this initial step, our software engineering process
includes two additional steps specific to context-aware applications. The first
(A2) focuses on the types of context information that are required in order to
implement the functionality identified at A1. Gray and Salber [25] provide a
good discussion of the issues that need to be considered at this stage. They
include identifying, for each type of context information:

(1) the required information quality in terms of resolution, timeliness, and
so on; and

(2) sources for the information that are suitable in terms of intrusiveness,
cost and other constraints.

In our approach, this step produces a context model in two parts. The first
is a CML model, as in Figure 1, documenting basic fact types, their origins
(sensed, derived or profiled), appropriate types of quality metadata, domain
constraints, and so on. The second is a set of situations to which the application
can adapt, as in Figure 2, defined in terms of fact types and other situations.
These outputs are rarely produced from scratch, as there are considerable
overlaps in the context requirements of many context-aware applications.

The final analysis step (A3) refines the functionality identified in A1, focusing
on the specification of those aspects that are context-dependent. In this step,
the analyst identifies those choices and events that are influenced or triggered
by the context, and, for each of these, documents the role of context by pro-
ducing sample preferences and triggers. This is generally performed iteratively
with step A2, until the outputs of the two steps are consistent.

Following analysis, the software engineering process diverges into two sets of
tasks that can be performed in parallel, one concerned with design and imple-
mentation, and the other with customisation of the software infrastructure.

6.2 Infrastructure customisation

Prior to executing a new application on top of our software infrastructure, it
is usually necessary to customise some of the components. If new fact types
or situations are required, these must be inserted into the management layers
shown in Figure 6. This step is largely automated by a tool that inputs textual
representations of fact types and situations and, based on the relational map-
ping described in Section 2.3, uses them to generate scripts that manipulate

18

the relevant databases [26]. The addition of sensed fact types may also require
the implementation of receptors, interpreters and aggregators for the context
gathering and reception layers. These tasks make up step I1 in Figure 7.

For system testing purposes, we generally require sample sets of context infor-
mation, preferences and triggers. Step I2 consists of building appropriate sets
and using them to populate the context and adaptation managers.

Step I3 occurs prior to deployment, once the application and underlying mod-
els are stable, and consists of mapping the context model, preference sets and
triggers developed at steps A2, A3, I2 and T2 to customisation interfaces.
These enable developers, system administrators and users to browse and ma-
nipulate profiled context information and configure preferences and triggers
via appropriate user interface abstractions.

6.3 Testing

The task of testing context-aware applications involves unique challenges. Tse
et al. [27] point out that it is no longer adequate to perform unit testing solely
on the basis of source code, as in traditional white box methods, when part of
the application behaviour is determined by triggers or rules that are separate
from the code. Bylund and Espinoza [28] describe additional difficulties that
arise when testing applications that rely on sensor data, and argue that test-
ing with both live and simulated data is essential. Unfortunately, satisfactory
solutions to these problems do not yet exist, so we describe a typical, rather
than an ideal, testing process.

At the unit testing stage (T1), we apply traditional white box testing methods,
using a test framework such as JUnit 5 . At the system test stage (T2), we carry
out black box testing using specially constructed sets of context information,
preferences and triggers. Because the behaviour of a context-aware application
is dependent on many variables (including numerous kinds of context and each
user’s particular configuration of preferences and triggers), it can be difficult
to anticipate the exact nature of the behaviour in advance solely by studying
the context model, preferences and triggers. Consequently, a large part of the
goal of system testing is to experiment with and fine-tune the preferences and
triggers developed during step A3, and verify that each combination of con-
text, preferences and triggers yields satisfactory behaviour. The final stage of
testing (T3) evaluates the application in the field, using a realistic hardware
environment, live sensor data, and real users. At this stage, information qual-
ity and privacy issues associated with sensors and other sources of context

5 http://junit.sourceforge.net/

19

information may be uncovered, leading to possible re-iteration through one or
more earlier steps.

7 Case study: context-aware communication

As a means of validating our models and infrastructure, we carried out a case
study in which we built a context-aware communication tool. This section
presents the objectives, design and outcomes of this study. Since completing
the case study, we have further demonstrated the value of our approach by
applying it to a variety of applications, some of which are briefly outlined in
Section 7.3.3. A full discussion of these applications is beyond the scope of this
paper; however, we refer the interested reader to two recent papers [29,30] for
more information.

7.1 Objectives

The goals of the case study were to evaluate the ability of our models and
infrastructure to support software engineering tasks and to facilitate the de-
velopment of flexible and evolvable software. The study primarily considered
core application development tasks, rather than infrastructure-related tasks
(e.g., development of interpreters and receptors). As our primary interest lies
in rapid prototyping, our evaluation was not concerned with performance is-
sues, such as the efficiency of the context management system. Neither was it
concerned with the expressiveness of our modelling approaches; this is already
discussed in some of our other papers [10,30] and demonstrated implicitly by
the fact that we have used the approaches in the development of a variety of
context-aware applications, as discussed briefly in Section 7.3.3.

Figure 8 lists the software quality measures that we considered in the study,
and the metrics we used to evaluate the quality of software with respect to each
measure. This set of measures and metrics is not exhaustive, but reflects the
principal goals of our software engineering approach. Usability metrics, such
as the rate of inappropriate context-aware actions and ease of configuration,
are also important, but were outside the scope of the initial study.

Our goal was to perform a comparative evaluation, contrasting the prototype
that we developed with alternative implementations developed without our
programming models and infrastructure. We discuss the prototype in the fol-
lowing section and the results in Section 7.3. Note that, as many alternative
implementations are possible (depending on assumptions about how context
information is queried, interpreted and so on), it is not feasible to present a

20

Quality measures Metrics for evaluation

Code complexity Lines of application code concerned with context querying,
manipulation and processing

Maintainability and
support for evolution

New or modified lines of code required to support changes
in context model or context-based requirements

Reusability Ease of reuse of context definitions and context processing
components (e.g., fact and situation definitions, preferences,
triggers, context interpreters and aggregators)

Fig. 8. Selected software quality measures for context-aware applications.

straightforward quantitative comparison. Therefore, our discussion is necessar-
ily qualitative in places rather than quantitative. Note, also, that the formality
of our evaluation is somewhat limited by the absence of established methods
for evaluating software quality in relation to context-aware applications.

7.2 Application

The application developed in our case study took the form of a tool designed
to recommend communication channels for interactions between people based
on context and preferences. Given a priority, topic and list of people, the
tool suggests appropriate contact addresses, such as phone numbers or instant
messaging IDs. It aims to minimise disruption, prevent missed calls/messages
and improve the timeliness of interactions.

In the remainder of this section, we briefly outline the process that was used
to develop the communication tool, with reference to a subset of the soft-
ware engineering steps described in Section 6. As the tool was developed as
a prototype, rather than a stable application, our testing was mainly carried
out informally. Similarly, as the design and infrastructure customisation tasks
were both straightforward, we do not discuss them here.

7.2.1 Analysis

We developed a context model and sample sets of user preferences for the tool
following an informal user study 6 . In this study, we asked people to record
their interactions with other people during the course of a day, the chan-
nel used for each interaction (e.g., a particular telephone number or email
address), and the reason for the choice of channel. By examining the cited
reasons, we were able to compile a list of the most relevant types of context,

6 Note that triggers were not required for the chosen application design.

21

such as the current activity of the other person, the importance of the in-
teraction, and the time (e.g., inside or outside working hours). Most of the
basic types of context, such as user activity, could be mapped directly to fact
types, while some derived context types, such as temporal conditions, were
better represented as situations. We also mapped some types of context (e.g.,
the priority of the user’s current interaction) to application state variables,
rather than to fact types, to represent information supplied directly to the ap-
plication by the user. The application state variables also appear in relevant
situations and preferences.

We already showed a subset of the CML model produced for the application
in Figure 1. The main types of information captured by the model are activ-
ity, location and proximity data (represented by the “engaged in”, “located
at” and “located near” fact types shown in Figure 1), associations between
people, communication channels and devices (captured by the “has channel”
and “permitted to use” fact types) and information about interpersonal re-
lationships (not shown). For each fact type, we investigated suitable sources
of the information for our prototype, taking into account the required imple-
mentation effort and relevant usability issues (e.g., privacy concerns and the
burden on the user). We decided to derive location and proximity information
from a variety of location sensors, but to rely on users to specify most other
types of context information. Some of the user-supplied information requires
direct configuration (as in the case of information about users’ communication
channels, represented by the “has channel” fact type), while other informa-
tion can be obtained indirectly (as in the case of user activity information,
which can be pulled from calendar applications).

After creating the context model, we re-examined the list of reasons cited
by our study participants for their choices of communication channels, and
mapped each reason to one or more preferences. In doing so, we identified
some fact types and situations that were previously missing from our context
model. We also formed comprehensive preference sets for several representative
study participants, which we later used for testing purposes. A small subset
of one of the preference sets appeared in Figure 3, while the corresponding
situation definitions appeared in Figure 2.

The most challenging aspect of specifying the preferences was deciding suitable
preference ratings and choosing a policy with which to combine the ratings.
For the communication tool (and most of our other applications), we used the
simple averaging policy described in Section 3 and a restricted set of numerical
preference ratings representing high, medium-high, medium, medium-low and
low preference. In our experience, it is rarely necessary to use more than
these five levels of preference (in addition to the special non-numerical values),
although our model allows arbitrary values in the range [0,1].

22

After drafting the preferences sets, we worked through the preference evalu-
ations by hand for a small set of scenarios, and tweaked the preferences in
certain cases. The task of drafting, testing and tweaking preferences in this
way is, of course, beyond the scope of the average user. This reinforces our
argument presented in Section 3 that our preference model should be used by
application developers, but not exposed to users. Instead, the developer should
provide users with configuration options that can be used to manipulate the
preferences in a more controlled way than editing preferences directly.

7.2.2 Implementation

We implemented a prototype in Java using the query and branching facilities
of our programming toolkit. It is mainly designed for use on desktop PCs or
laptops, but could also run on a mobile device such as a PDA. Each user
executes a copy of the tool (henceforth referred to as an agent), which is
responsible for evaluating his/her context and preferences and maintaining a
personal history of interactions. When requested for a recommendation, the
agent sends the details of the requested interaction to the agents operating
on behalf of the other participants, soliciting suggestions of suitable channels.
These agents query the “has channel” fact type to find contact addresses
suitable for their users, and then invoke the branching toolkit’s “rate” method
to evaluate their suitability against the user’s context and preferences. If any
contact addresses receive the obligation score (⊼), the agent returns these to
the querying agent; otherwise, it returns highly rated addresses. The querying
agent combines the results, filters and sorts them on preferences (again using
the rate method), and presents the results to the user.

The implementation of the prototype and its use of the branching toolkit are
discussed further in Section 7.3.1.

7.3 Evaluation

An evaluation of the prototype with respect to the software quality measures
described in Section 7.1 follows.

7.3.1 Code complexity

Our design of the tool restricts context queries and invocations of the branch-
ing toolkit to the single Java class that implements the channel selection algo-
rithm. This functionality represents approximately two dozen lines of source
code (or less than 1 percent of the total). A representative sample consisting
of a little more than half of this code is shown in Figure 9. This code fragment

23

implements a method that is used to first discover the communication chan-
nels available to the user (lines 7 to 9), and then to filter these to obtain the
most suitable channels according to the user’s requirements and context (lines
12 to 35). Without loss of generality, we concentrate on the implementation of
this method throughout most of our evaluation, in order to keep the discussion
focused and concrete.

We have numbered the lines in the listing to aid in our discussion; note, how-
ever, that when discussing line of code (LOC) counts, we actually refer to
statement counts, not numbers of new line characters 7 . Thus, we count the
code in Figure 9 as 16 lines of code rather than 36.

Each agent explicitly queries only a single fact type each time the channel
selection procedure is invoked (lines 7 to 9). This means that, although our
context model initially contained over a dozen fact types (and grew subse-
quently as we incorporated new types of context), most of these could be
ignored by the programmer. The branching model shifts most of the context
evaluation to the programming toolkit and the preference management layer.
This evaluation is carried out in response to the agent’s two calls to the rate

method of the programming toolkit’s branching API (one of which is shown
in lines 20 to 24).

Without the use of branching (and the supporting preference and situation
abstractions), the number of context queries and the lines of code devoted to
context processing would both be substantially larger. To illustrate, we show
an alternative implementation of the “selectChannels” method in Figure 10
which uses our programming toolkit only for direct queries on context facts.
This implements preference p1 from Figure 3; that is, it retrieves all communi-
cation channels associated with the user, and then discards any synchronous
channel that requires a device (i) that is not in close proximity to the user,
or (ii) for which the user lacks the required permissions. Note that, although
only one preference is implemented, the number of context queries has risen
from one to six (lines 7-9; 16-18; 23-24; 29-31; 38-40 and 41-43), and the LOC
count for the method has grown from 16 to 26. Lines 14 to 48 in the listing are
responsible for implementing preference p1, and collectively have a LOC count
of 18. Extrapolating from this, the implementation of even a moderate number
of additional user preferences in a similar fashion - say, a dozen preferences -
adds above two hundred lines of code. This represents a more than ten-fold
increase over our implementation of selectChannels in Figure 9, which is able
to support arbitrary numbers and types of user preferences.

Note that with appropriate tool support, the LOC count for code written

7 To be more precise, we count the number of semicolons, including special cases
such as semicolons in the conditions of for-loops, plus the number of for-, if-, else-
and case-statements.

24

1 : Channel[] selectChannels(

2 : Identity initiator, Priority priority, String subject)

3 : throws

4 : NoChannelsException

5 : {

6 : // Look up suitable communication channels

7 : Valuation[] channels = context.bind(

8 : FactTypes.HAS_CHANNEL,

9 : new Tuple(user, Variables.CHANNEL));

10:

11: // Bind state variables for preference and situation evaluation

12: Valuation stateVariables = new Valuation();

13: stateVariables.bind(Variables.PERSON, config.getProperty(USER));

14: stateVariables.bind(Variables.CALLEE, config.getProperty(USER));

15: stateVariables.bind(Variables.CALLER, initiator);

16: stateVariables.bind(Variables.PRIORITY, priority);

17: stateVariables.bind(Variables.SUBJECT, subject);

18:

19: // Evaluate the channels using the branching toolkit

20: Scores scores = Branching.rate(

21: Choice.toChoices(channels),

22: new Preference(config.getProperty(USER_PREFERENCE_NAME)),

23: stateVariables,

24: context);

25:

26: // Process the results of the preference evaluation

27: if (scores.hasOblige())

28: return toChannelArray(scores.getOblige());

29: else if (scores.hasNumerical())

30: return toChannelArray(scores.getBestN(

31: config.getProperty(MAX_CHANNELS)));

32: else if (scores.hasIndifferent())

33: return toChannelArray(scores.getIndifferent());

34: else

35: throw new NoChannelsException();

36: }

Fig. 9. A code fragment taken from our prototype. This contains the single context
query made by the application, and one of the two preference evaluations mentioned
in Section 7.2.

using our programming toolkit can be reduced by one third to one half the
current level. McFadden et al. [26] demonstrate that helper classes generated
for specific context models can reduce the need for tasks such as packing
and unpacking of the Valuation objects containing variable bindings used in
context queries and preference evaluations (lines 12 to 17 in Figure 9).

25

1-10: AS PER FIGURE 9.

11: List availableChannels = new Vector();

12: for (int i = 0; i < channels.length; i++)

13: {

14: // Determine whether the channel type is synchronous

15: Channel channel = channels[i].lookup(Variables.CHANNEL);

16: Valuation[] modes = context.bind(

17: FactTypes.HAS_MODE,

18: new Tuple(channel, Variables.COMMUNICATION_MODE));

19: if (modes.length != 0)

20: {

21: CommunicationMode mode =

22: modes[0].lookup(Variables.COMMUNICATION_MODE);

23: TruthValue synchronous = context.EvaluateAssertion(

24: FactTypes.SYNCHRONOUS, new Tuple(mode));

25: if (synchronous.isTrue())

26: {

27: // For synchronous channels, check that the user

28: // currently has the requisite devices on hand

29: Valuation[] requiredDevices = context.bind(

30: FactTypes.REQUIRES_DEVICE,

31: new Tuple(channel, Variables.DEVICE));

32: for (int j = 0; j < requiredDevices.length; j++)

33: {

34: Device device =

35: requiredDevices[j].lookup(Variables.DEVICE);

36: Tuple tuple =

37: new Tuple(config.getProperty(USER), device);

38: boolean permittedToUse =

39: context.EvaluateAssertion(

40: FactTypes.PERMITTED_TO_USE, tuple).isTrue();

41: boolean locatedNear =

42: context.EvaluateAssertion(

43: FactTypes.LOCATED_NEAR, tuple).isTrue();

44: if (locatedNear && permittedToUse)

45: availableChannels.add(channel);

46: } else

47: availableChannels.add(channel);

48: }

49: }

50: if (availableChannels.size() == 0)

51: throw new NoChannelsException();

52: return toArray(availableChannels);

53: }

Fig. 10. A code fragment that evaluates the suitability of communication channels,
without using the situation and preference definitions and branching API. Lines 1
to 10 are omitted as they are identical to those in Figure 9. The code has the same
result as the first preference listed in Figure 3.

26

7.3.2 Maintainability and support for evolution

The loose coupling between the source code of our prototype and the un-
derlying context model makes it trivial to modify almost all of the latter in
response to changes in the sensing infrastructure or user requirements, with-
out changes to the former. Removal or modification of fact types may require
situation or preference definitions to be updated; however, only changes to the
definition of “has channel” can necessitate code changes, and these changes
are likely to be confined to just a few lines (7 to 9) of the selectChannels

method that we showed in Figure 9. The same cannot be said of our alter-
native implementation, which, despite having severely limited functionality (a
single preference), is already dependent on six fact types (“has channel”, “has
mode”, “synchronous”, “requires device”, “permitted to use” and “located
near”), and is therefore much less tolerant of changes in the context model.

New fact types and situations can also be added to our prototype without
modification of code or preferences, although these cannot be exploited until
the preferences are updated. We have used this feature on several occasions
to incorporate new types of sensors. In our alternative implementation, some
coding effort is required to take advantage of additions to the context model. In
most cases, this effort is likely to be substantial, as the context processing logic
is complex and difficult to structure appropriately for large context models or
large numbers of user preferences.

Finally, changes in context-based user requirements can be incorporated into
our prototype simply by manipulating the preference definitions; this is con-
siderably easier than changing the decision logic embedded in the source code
of the alternative implementation.

When using our software engineering approach, the most time consuming task
involved in accommodating changes in the sensing infrastructure lies in pro-
ducing components that process the outputs of new sensors (i.e., interpreters,
aggregators and receptors). This task is unavoidable in all context-aware sys-
tems. However, by using a common infrastructure and allowing elements of
the context models to be shared, the effort can usually be amortised over
several applications. Additionally, receptor code for our infrastructure can be
automatically generated as demonstrated by McFadden et al. [26].

7.3.3 Reusability

The communication prototype represented the first application developed us-
ing our models and infrastructure, so it was necessary to design its context
model and preferences from scratch. However, the potential for reuse be-
came apparent when we developed subsequent applications, which included
additional communication tools and a vertical handover prototype capable

27

of dynamically switching between network interfaces based on network Qual-
ity of Service (QoS), location changes and other context information. For our
later communication applications, we modified the original context model only
slightly to add information about device capabilities and status. However, we
could reuse portions of the preference sets defined for the first prototype. For
the vertical handover prototype, we made minimal extensions to the context
model to represent network QoS and network interfaces supported by each
device. We were also able to reuse situations, interpreters and receptors de-
veloped for the communication tools, but had to define new preferences to
support the selection of network interfaces.

Reuse is more difficult in the alternative implementation shown in Figure 10.
As this implementation retains the context model used by our prototype (as
well as the use of our context management infrastructure), reuse of fact types
and infrastructural components such as interpreters and aggregators remains
possible. However, situation and preference definitions are both embedded in
the source code. As this code is reasonably complex (given that it implements
only a single preference), and is difficult to structure effectively, reuse is prob-
lematic and error-prone.

7.3.4 Summary

Figure 11 summarises the results of our evaluation with respect to the set of
quality metrics shown in the leftmost column. The second column presents
the results for the selectChannels implementation we produced as part of our
prototype, which uses our branching model and API, and is shown in Figure
9. The third column evaluates the implementation presented in Figure 10,
which uses our programming toolkit only for direct queries on fact types, and
implements only a single preference. Finally, the rightmost column considers
an extension of the single-preference implementation to a reasonably large
number of preferences, according to the assumptions discussed in Section 7.3.1.

The implementations in the last two columns can be regarded as generally
representative of context-aware software of low and medium levels of com-
plexity, implemented with infrastructural support for context management
and querying (somewhat similar to that provided by the Context Toolkit and
Solar), but without high-level programming models to support a flexible map-
ping of contexts to appropriate actions. Most context-aware applications are
currently implemented in this fashion. The results present a compelling jus-
tification for software engineering approaches and infrastructures of the form
presented in this paper, which provide a well integrated set of high-level design
and programming abstractions, in addition to support for context acquisition,
management and querying.

28

Software quality
metric

With branching
API (Figure 9)

Without branching
API - 1 preference
(Figure 10)

Without branching
API - many
preferences

Total LOC 16 26 ≥ 200

Number of explicit
context queries

1 6 ≥ number of fact
types a

LOC affected by
removal or
modification of
fact types

≥1 ≥6 ≥ number of fact
types a

New LOC
required to exploit
new fact types

0 Numerous b Numerous b

New LOC required
to support new
preferences

0 Numerous c Numerous c

New/modified LOC
required to support
modification of
preferences

0 Numerous c Numerous c

Mechanisms for
context reuse

Fact types and
situations;
interpreters and
aggregators

Fact types;
interpreters
and
aggregators

Fact types;
interpreters
and
aggregators

Mechanisms for
preference reuse

Shared
preferences

Copied/shared
source code

Copied/shared
source code

a Assuming that all types of context information are used in the preferences.
b Actual LOC count varies depending on the use of context.
c Actual LOC count varies depending on the preferences.

Fig. 11. A comparison of selectChannels implementations.

8 Concluding remarks

This paper presented a set of conceptual models designed to facilitate the de-
velopment of context-aware applications by introducing greater structure and
improved opportunities for tool support into the software engineering process.
As the evaluation in the previous section showed, our models and approach
lead to applications that are maintainable, evolvable and based upon a set of
reusable foundations, such as context definitions and context processing com-
ponents. Further, they support a high degree of customisation by users, which

29

is generally not the case with context-aware applications developed using ad
hoc software engineering approaches.

As future work, we plan further case studies to evaluate other aspects of our
approach, such as the usability issues mentioned in Section 7.1. We also intend
to extend our branching toolkit to support user feedback mechanisms that
can be used in conjunction with algorithms for learning preferences. In the
longer term, we are interested in investigating several aspects of the software
engineering process that remain poorly understood in relation to context-
aware software. We believe that challenges related to testing, in particular,
will need to be addressed further before context-aware applications become
widely deployed.

9 Acknowledgements

We gratefully acknowledge the contributions of Ted McFadden, Sasitharan
Balasubramaniam, Peter Mascaro and Jessica Purser to the applications de-
veloped following our initial case study, which were described briefly in Section
7.3.3.

References

[1] K. Cheverst et al., Experiences of developing and deploying a context-aware
tourist guide: the GUIDE project. 6th International Conference on Mobile
Computing and Networking, Boston, August, 2000. pp. 20-31.

[2] S. N. Patel and G. D. Abowd, The ContextCam: Automated Point of Capture
Video Annotation. 6th International Conference on Ubiquitous Computing. In:
Lecture Notes in Computer Science, Volume 3205, pp. 301-318. Springer, 2004.

[3] Y. Shi et al., The Smart Classroom: Merging Technologies for Seamless Tele-
Education. IEEE Pervasive Computing, 2(2): pp. 47-55, April-June, 2003.

[4] H. Chen et al., Intelligent Agents Meet Semantic Web in a Smart Meeting Room.
3rd International Joint Conference on Autonomous Agents and Multiagent
Systems, July, 2004. pp. 854-861.

[5] S. Helal et al., Enabling Location-Aware Pervasive Computing Applications
for the Elderly. 1st IEEE Conference on Pervasive Computing and
Communications, Fort Worth, March, 2003.

[6] A. K. Dey, D. Salber and G. D. Abowd, A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-Aware Applications. Human-
Computer Interaction, 16(2-4): pp. 97-166, 2001.

30

[7] G. Chen and D. Kotz, Context Aggregation and Dissemination in Ubiquitous
Computing Systems. 4th IEEE Workshop on Mobile Computing Systems and
Applications, Callicoon, June, 2002.

[8] J. Pascoe, Adding Generic Contextual Capabilities to Wearable Computers. 2nd
International Symposium on Wearable Computers, October, 1998. pp. 92-99.

[9] H. Lei et al., The Design and Applications of a Context Service. ACM
SIGMOBILE Mobile Computing and Communications Review, 6(4): pp. 45-
55, October, 2002.

[10] K. Henricksen, J. Indulska and A. Rakotonirainy, Modeling Context Information
in Pervasive Computing Systems. 1st International Conference on Pervasive
Computing. In: Lecture Notes in Computer Science, Volume 2414, pp. 167-180.
Springer, 2002.

[11] A. Schmidt et al., Advanced Interaction in Context. 1st International
Symposium on Handheld and Ubiquitous Computing. In: Lecture Notes in
Computer Science, Volume 1707, pp. 89-101. Springer, 1999.

[12] T. A. Halpin, Information Modeling and Relational Databases: From Conceptual
Analysis to Logical Design. Morgan Kaufman, San Francisco, 2001.

[13] K. Henricksen and J. Indulska, Modelling and Using Imperfect Context
Information. 1st Workshop on Context Modeling and Reasoning, PerCom’04
Workshop Proceedings, IEEE Computer Society, March, 2004. pp. 33-37.

[14] K. Henricksen, J. Indulska and A. Rakotonirainy, Generating Context
Management Infrastructure from Context Models. 4th International Conference
on Mobile Data Management (Industrial Track), January, 2003. pp. 1-6.

[15] K. Henricksen, A Framework for Context-Aware Pervasive Computing
Applications. PhD thesis, School of Information Technology and Electrical
Engineering, The University of Queensland. September, 2003.

[16] A. K. Dey and G. D. Abowd, CybreMinder: A Context-Aware System
for Supporting Reminders. 2nd International Symposium on Handheld and
Ubiquitous Computing. In: Lecture Notes in Computer Science, Volume 1927,
pp. 172-186. Springer, 2000.

[17] K. Cheverst et al., Using Context as a Crystal Ball: Rewards and Pitfalls.
Personal and Ubiquitous Computing, 5(1): pp. 8-11, 2001.

[18] H. E. Byun and K. Cheverst, Harnessing Context to Support Proactive
Behaviours. ECAI2002 Workshop on AI in Mobile Systems, Lyon, July, 2002.

[19] T. F. Paymans, J. Lindenberg and M. Neerincx, Usability Trade-offs for
Adaptive User Interfaces: Ease of Use and Learnability. 9th International
Conference on Intelligent User Interfaces, ACM Press, 2004. pp. 301-303.

[20] M. Nilsson, J. Hjelm and H. Ohto, Composite Capabilities/Preference Profiles:
Requirements and Architecture. W3C Working Draft, 21 July, 2000.

31

[21] R. Agrawal and E. L. Wimmers, A Framework for Expressing and Combining
Preferences. ACM SIGMOD Conference on Management of Data, Dallas, May,
2000. pp. 297-306.

[22] A. Newberger and A. Dey, Designer Support for Context Monitoring and
Control. Technical report IRB-TR-03-017, Intel Research Berkeley. June, 2003.

[23] P. J. Brown, The Stick-e Document: a Framework for Creating Context-Aware
Applications. Electronic Publishing, Palo Alto, 1996. pp. 259-272.

[24] B. Segall et al., Content Based Routing with Elvin4. AUUG2K Conference,
Canberra, June, 2000.

[25] P. Gray and D. Salber, Modelling and Using Sensed Context Information in
the Design of Interactive Applications. 8th IFIP International Conference on
Engineering for Human-Computer Interaction. In: Lecture Notes in Computer
Science, Volume 2254, pp. 317-336. Springer, 2001.

[26] T. McFadden, K. Henricksen and J. Indulska, Automating Context-aware
Application Development. UbiComp 1st International Workshop on Advanced
Context Modelling, Reasoning and Management, September, 2004. pp. 90-95.

[27] T. H. Tse et al., Testing Context-Sensitive Middleware-Based Software
Applications. 28th Annual International Computer Software and Applications
Conference, IEEE Computer Society, 2004.

[28] M. Bylund and F. Espinoza, Testing and demonstrating context-aware services
with Quake III Arena. Communications of the ACM, 45(1): pp. 46-48, 2002.

[29] T.McFadden, K. Henricksen, J. Indulska and P. Mascaro, Applying a Disciplined
Approach to the Development of a Context-Aware Communication Application.
3rd IEEE Conference on Pervasive Computing and Communications, Hawaii,
March, 2005. pp. 300-306.

[30] J. Indulska, K. Henricksen, T. McFadden and P. Mascaro, Towards a
Common Context Model for Virtual Community Applications. 2nd International
Conference on Smart Homes and Health Telematics (ICOST). In: Assistive
Technology Research Series, Volume 14, pp. 154-161. IOS Press, 2004.

32

